
Committee Draft ISO/IEC CD

Date:
2006-02-18

Reference number: ISO/JTC 1/SC
32N1409

Supersedes document SC 32N1201

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO CHANGE. IT SHOULD NOT
BE USED FOR REFERENCE PURPOSES.

ISO/IEC JTC 1/SC
32
Data Management
and Interchange

Secretariat:
USA (ANSI)

Circulated to P- and O-members, and to technical committees
and organizations in liaison for voting (P-members only) by:

2006-05-18

Please return all votes and comments in electronic form directly
to the SC 32 Secretariat by the due date indicated.

ISO/IEC CD 9075-03:200x(E)

Title: Information technology - Information technology - Database Languages - SQL -
Part 3: Call-Level Interface (SQL/CLI)

Project: 1.32.03.06.03.00

Introductory note: The attached document is hereby submitted for a three-month letter

ballot to the National Bodies of ISO/IEC JTC 1/SC 32. The ballot
starts 2006-02-18.

Medium: E

No. of pages: 390
Address Reply to: SC 32 Secretary, ISO/IEC JTC 1/SC 32,
Farance Inc, Island Box 256, New York, NY 10044-0205, United States of America
Telephone: +1 212 486-4700; E-mail: SC32-Sec@JTC1SC32.org

ISO/IEC JTC 1/SC 32

Date: 2006-02-01

CD 9075-3:200x(E)

ISO/IEC JTC 1/SC 32/WG 3

The United States of America (ANSI)

Information technology — Database languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

Technologies de l'information — Langages de base de données — SQL —

Partie 3: Interface de Niveau d'Appel (SQL/CLI)

Document type: International Standard
Document subtype: Committee Draft (CD)
Document stage: (3) CD under Consideration
Document language: English

Copyright notice

This ISO document is a working draft or a committee draft and is copyright-protected by ISO.While the reproduction
of working drafts or committee drafts in any form for use by participants in the ISO standards development process
is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced,
stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce for the purpose of selling it should be addressed as shown below or to ISO's
member body in the country of the requester.

ANSI Customer Service Department
25 West 43rd Street, 4th Floor
New York, NY 10036
Tele: 1-212-642-4980
Fax: 1-212-302-1286
Email: storemanager@ansi.org
Web: www.ansi.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violaters may be prosecuted.

Contents Page

Foreword. ix

Introduction. x

1 Scope. 1

2 Normative references. 3
2.1 JTC1 standards. 3

3 Definitions, notations, and conventions. 5
3.1 Definitions. 5

3.1.1 Definitions provided in Part 3. 5

3.2 Conventions. 5

3.2.1 Specification of routine definitions. 5

4 Concepts. 7
4.1 Introduction to SQL/CLI. 7

4.2 Return codes. 10

4.3 Diagnostics areas in SQL/CLI. 11

4.3.1 Setting of ROW_NUMBER and COLUMN_NUMBER fields. 14

4.4 Miscellaneous characteristics. 15

4.4.1 Handles. 15

4.4.2 Null terminated strings. 15

4.4.3 Null pointers. 15

4.4.4 Environment attributes. 16

4.4.5 Connection attributes. 16

4.4.6 Statement attributes. 17

4.4.7 CLI descriptor areas. 18

4.4.8 Obtaining diagnostics during multi-row fetch. 18

4.5 Client-server operation. 19

5 Call-Level Interface specifications. 21
5.1 <CLI routine>. 21

5.2 <CLI routine> invocation. 30

5.3 Implicit set connection. 33

5.4 Implicit cursor. 34

5.5 Implicit DESCRIBE USING clause. 36

5.6 Implicit EXECUTE USING and OPEN USING clauses. 42

5.7 Implicit CALL USING clause. 48

5.8 Implicit FETCH USING clause. 52

5.9 Character string retrieval. 57

Contents iii

5.10 Binary string retrieval. 58

5.11 Deferred parameter check. 59

5.12 CLI-specific status codes. 60

5.13 Description of CLI item descriptor areas. 62

5.14 Other tables associated with CLI. 74

5.15 SQL/CLI data type correspondences. 101

6 SQL/CLI routines. 111
6.1 AllocConnect. 111

6.2 AllocEnv. 112

6.3 AllocHandle. 113

6.4 AllocStmt. 116

6.5 BindCol. 117

6.6 BindParameter. 119

6.7 Cancel. 123

6.8 CloseCursor. 125

6.9 ColAttribute. 126

6.10 ColumnPrivileges. 128

6.11 Columns. 134

6.12 Connect. 143

6.13 CopyDesc. 147

6.14 DataSources. 148

6.15 DescribeCol. 150

6.16 Disconnect. 152

6.17 EndTran. 154

6.18 Error. 158

6.19 ExecDirect. 160

6.20 Execute. 163

6.21 Fetch. 165

6.22 FetchScroll. 168

6.23 ForeignKeys. 172

6.24 FreeConnect. 185

6.25 FreeEnv. 186

6.26 FreeHandle. 187

6.27 FreeStmt. 190

6.28 GetConnectAttr. 192

6.29 GetCursorName. 194

6.30 GetData. 195

6.31 GetDescField. 201

6.32 GetDescRec. 203

6.33 GetDiagField. 205

6.34 GetDiagRec. 214

6.35 GetEnvAttr. 216

6.36 GetFeatureInfo. 218

iv Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

6.37 GetFunctions. 221

6.38 GetInfo. 222

6.39 GetLength. 226

6.40 GetParamData. 228

6.41 GetPosition. 234

6.42 GetSessionInfo. 236

6.43 GetStmtAttr. 238

6.44 GetSubString. 241

6.45 GetTypeInfo. 243

6.46 MoreResults. 247

6.47 NextResult. 248

6.48 NumResultCols. 249

6.49 ParamData. 250

6.50 Prepare. 257

6.51 PrimaryKeys. 259

6.52 PutData. 264

6.53 RowCount. 267

6.54 SetConnectAttr. 268

6.55 SetCursorName. 270

6.56 SetDescField. 272

6.57 SetDescRec. 277

6.58 SetEnvAttr. 279

6.59 SetStmtAttr. 281

6.60 SpecialColumns. 285

6.61 StartTran. 292

6.62 TablePrivileges. 294

6.63 Tables. 299

7 Definition Schema. 307
7.1 SQL_IMPLEMENTATION_INFO base table. 307

7.2 SQL_SIZING base table. 310

8 Conformance. 313
8.1 Claims of conformance to SQL/CLI. 313

8.2 Additional conformance requirements for SQL/CLI. 313

8.3 Implied feature relationships of SQL/CLI. 314

Annex A Typical header files. 315
A.1 C header file SQLCLI.H. 315

A.2 COBOL library item SQLCLI. 328

Annex B Sample C programs. 339
B.1 Create table, insert, select. 339

B.2 Interactive Query. 342

B.3 Providing long dynamic arguments at Execute time. 346

Annex C Implementation-defined elements. 349

Contents v

CD 9075-3:200x(E)

Annex D Implementation-dependent elements. 363

Annex E Incompatibilities with ISO/IEC 9075:2003. 369

Annex F SQL feature taxonomy. 371

Index. 373

vi Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Tables

Table Page

1 Header fields in SQL/CLI diagnostics areas. 12
2 Status record fields in SQL/CLI diagnostics areas. 13
3 Supported calling conventions of SQL/CLI routines by language. 24
4 Abbreviated SQL/CLI generic names. 25
5 SQLSTATE class and subclass values for SQL/CLI-specific conditions. 60
6 Fields in SQL/CLI row and parameter descriptor areas. 67
7 Codes used for implementation data types in SQL/CLI. 69
8 Codes used for application data types in SQL/CLI. 70
9 Codes associated with datetime data types in SQL/CLI. 71
10 Codes associated with <interval qualifier> in SQL/CLI. 72
11 Codes associated with <parameter mode> in SQL/CLI. 73
12 Codes associated with user-defined types in SQL/CLI. 73
13 Codes used for SQL/CLI diagnostic fields. 74
14 Codes used for SQL/CLI handle types. 76
15 Codes used for transaction termination. 76
16 Codes used for environment attributes. 76
17 Codes used for connection attributes. 77
18 Codes used for statement attributes. 77
19 Codes used for FreeStmt options. 77
20 Data types of attributes. 78
21 Codes used for SQL/CLI descriptor fields. 78
22 Ability to set SQL/CLI descriptor fields. 81
23 Ability to retrieve SQL/CLI descriptor fields. 83
24 SQL/CLI descriptor field default values. 86
25 Codes used for fetch orientation. 88
26 Multi-row fetch status codes. 89
27 Miscellaneous codes used in CLI. 89
28 Codes used to identify SQL/CLI routines. 90
29 Codes and data types for implementation information. 93
30 Codes and data types for session implementation information. 95
31 Values for TRANSACTION ISOLATION OPTION with StartTran. 95
32 Values for TRANSACTION ACCESS MODE with StartTran. 95
33 Codes used for concise data types. 96
34 Codes used with concise datetime data types in SQL/CLI. 98
35 Codes used with concise interval data types in SQL/CLI. 98
36 Concise codes used with datetime data types in SQL/CLI. 99
37 Concise codes used with interval data types in SQL/CLI. 99
38 Special parameter values. 100
39 Column types and scopes used with SpecialColumns. 100

Contents vii

CD 9075-3:200x(E)

40 SQL/CLI data type correspondences for Ada. 101
41 SQL/CLI data type correspondences for C. 102
42 SQL/CLI data type correspondences for COBOL. 104
43 SQL/CLI data type correspondences for Fortran. 105
44 SQL/CLI data type correspondences for M. 106
45 SQL/CLI data type correspondences for Pascal. 108
46 SQL/CLI data type correspondences for PL/I. 109
47 Implied feature relationships of SQL/CLI. 314
48 Feature taxonomy and definition for mandatory features. 371

viii Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 9075-3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

This fourth edition of this part of ISO/IEC 9075 cancels and replaces the third edition, ISO/IEC 9075-3:2003.

ISO/IEC 9075 consists of the following parts, under the general title Information technology — Database lan-
guages — SQL:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schema (SQL/Schemata)

— Part 13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)

— Part 14: XML-Related Specifications (SQL/XML)

Foreword ix

CD 9075-3:200x(E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part of
ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions”, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts”, presents concepts used in the definition of the Call-Level Interface.

5) Clause 5, “Call-Level Interface specifications”, defines facilities for using SQL through a Call-Level
Interface.

6) Clause 6, “SQL/CLI routines”, defines each of the routines that comprise the Call-Level Interface.

7) Clause 7, “Definition Schema”, specifies extensions to the Definition Schema required for support of the
Call-Level Interface.

8) Clause 8, “Conformance”, defines the criteria for conformance to this part of ISO/IEC 9075.

9) Annex A, “Typical header files”, is an informative Annex. It provides examples of typical definition files
for application programs using the SQL Call-Level Interface.

10) Annex B, “Sample C programs”, is an informative Annex. It provides examples of using the SQL Call-
Level Interface in the C programming language.

11) Annex C, “Implementation-defined elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-defined.

12) Annex D, “Implementation-dependent elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

13) Annex E, “Incompatibilities with ISO/IEC 9075:2003”, is an informative Annex. It identifies incompatibil-
ities with ISO/IEC 9075-3:2003.

14) Annex F, “SQL feature taxonomy”, is an informative Annex. It contains a taxonomy of features of the SQL
language that are specified in this part of ISO/IEC 9075.

In the text of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page, and in Clause 5, “Call-Level
Interface specifications”, through Clause 8, “Conformance”, Subclauses begin a new page. Any resulting blank
space is not significant.

x Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

INTERNATIONAL STANDARD ISO/IEC CD 9075-3:200x

Information technology — Database languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

1 Scope

This part of ISO/IEC 9075 defines the structures and procedures that may be used to execute statements of the
database language SQL from within an application written in a programming language in such a way that pro-
cedures used are independent of the SQL statements to be executed.

Scope 1

(Blank page)

2 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 JTC1 standards

[ISO1539] ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1:
Base language.

[ISO1539-2] ISO/IEC 1539-2:2000, Information technology — Programming languages — Fortran —
Part 2: Varying length character strings.

[ISO1989] ISO 1989:2002, Information technology — Programming languages — COBOL.

[ISO6160] ISO 6160:1979, Programming languages — PL/I. (Endorsement of ANSI X3.53-1976).

[ISO7185] ISO/IEC 7185:1990, Information technology — Programming languages — Pascal.

[ISO8652] ISO/IEC 8652:1995, Information technology — Programming languages — Ada.

ISO/IEC 8652:1995/Cor.1:2001.

[Framework] ISO/IEC 9075-1:200n, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

[Foundation] ISO/IEC 9075-2:200n, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation)

[Schemata] ISO/IEC 9075-11:200n, Information technology — Database languages — SQL — Part 11:
Information and Definition Schemas (SQL/Schemata)

[ISO9899] ISO/IEC 9899:1999, Programming languages — C.

ISO/IEC 9899:1999/Cor 1:2001, Technical Corrigendum to ISO/IEC 9899:1999.

ISO/IEC 9899:1999/Cor 2:2004, Technical Corrigendum number 2 to ISO/IEC 9899:1999.

[ISO10206] ISO/IEC 10206:1991, Information technology — Programming languages — Extended Pascal.

[ISO11756] ISO/IEC 11756:1999, Information technology — Programming languages — M.

Normative references 3

CD 9075-3:200x(E)
2.1 JTC1 standards

(Blank page)

4 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

3 Definitions, notations, and conventions

This Clause modifies Clause 3, “Definitions, notations, and conventions”, in ISO/IEC 9075-2.

3.1 Definitions

This Subclause modifies Subclause 3.1, “Definitions”, in ISO/IEC 9075-2.

3.1.1 Definitions provided in Part 3

For the purposes of this document, the following definitions apply.

3.1.1.1 data source: A synonym for the SQL-server that is part of the current SQL-connection.

3.1.1.2 handle: A CLI object returned by an SQL/CLI implementation when a CLI resource is allocated
and used by an SQL/CLI application to reference that CLI resource.

3.1.1.3 inner table: The second operand of a left outer join or the first operand of a right outer join.

3.1.1.4 pseudo-column: A column that is part of a table but is not part of the descriptor for that table. An
example of such a pseudo-column is an implementation-defined row identifier.

3.1.1.5 rowset: One or more rows retrieved in a single invocation of the Fetch and FetchScroll routines.

3.1.1.6 SQL/CLI application: An application that invokes <CLI routine>s specified in this part of ISO/IEC
9075.

3.2 Conventions

This Subclause modifies Subclause 3.3, “Conventions”, in ISO/IEC 9075-2.

3.2.1 Specification of routine definitions

The routines in this document are specified in terms of:

— Function: A short statement of the purpose of the routine.

— Definition: The name of the routine and the name, mode, and data type of each of its parameters.

Definitions, notations, and conventions 5

CD 9075-3:200x(E)
3.1 Definitions

— General Rules: A specification of the run-time effect of the routine. Where more than one General Rule
is used to specify the effect of a routine, the required effect is that which would be obtained by beginning
with the first General Rule and applying the Rules in numeric sequence until a Rule is applied that specifies
or implies a change in sequence or termination of the application of the Rules. Unless otherwise specified
or implied by a specific Rule that is applied, application of General Rules terminates when the last in the
sequence has been applied.

6 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
3.2 Conventions

4 Concepts

This Clause modifies Clause 4, “Concepts”, in ISO/IEC 9075-2.

4.1 Introduction to SQL/CLI

This Subclause is modified by Subclause 4.18, “Introduction to SQL/CLI”, in ISO/IEC 9075-9.

The Call-Level Interface (SQL/CLI) is a binding style for executing SQL statements. This part of ISO/IEC
9075 provides specifications for routines that:

— Allocate and deallocate resources.

— Control connections to SQL-servers.

— Execute SQL statements using mechanisms similar to dynamic SQL.

— Obtain diagnostic information.

— Control transaction termination.

— Obtain information about the SQL/CLI implementation and the SQL-implementation.

A handle is a CLI object returned by an SQL/CLI implementation when a CLI resource is allocated; the handle
is used by an SQL/CLI application to reference that CLI resource. The AllocHandle routine allocates the
resources to manage an SQL-environment, an SQL-connection, a CLI descriptor area, or SQL-statement pro-
cessing; when invoked, it returns an environment handle, a connection handle, a descriptor handle, or a statement
handle, respectively. An SQL-connection is allocated in the context of an allocated SQL-environment. CLI
descriptor areas and SQL-statements are allocated in the context of an allocated SQL-connection. The FreeHandle
routine deallocates a specified resource. The AllocConnect, AllocEnv, and AllocStmt routines can be used to
allocate the resources to manage an SQL-connection, an SQL-environment, and SQL-statement processing,
respectively, instead of using the AllocHandle routine. The FreeConnect, FreeEnv, and FreeStmt routines can
be used to deallocate the specific resource instead of using FreeHandle.

Each allocated SQL-environment has an attribute that determines whether output character strings are null
terminated by the SQL/CLI implementation. The SQL/CLI application can set the value of this attribute by
using the routine SetEnvAttr and can retrieve the current value of the attribute by using the routine GetEnvAttr.

The Connect routine establishes an SQL-connection, which becomes the current SQL-connection . The Discon-
nect routine terminates an established SQL-connection. Switching between established SQL-connections occurs
automatically whenever the SQL/CLI application switches processing to a dormant SQL-connection, which
then becomes the current SQL-connection.

The ExecDirect routine is used for a one-time execution of an SQL-statement. The Prepare routine is used to
prepare an SQL-statement for subsequent execution using the Execute routine. In all three cases, the executed
SQL-statement can contain dynamic parameters.

Concepts 7

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

The interface for a description of dynamic parameters, dynamic parameter values, the result columns of a
<dynamic select statement> or <dynamic single row select statement>, and the target specifications for the
result columns is a CLI descriptor area. A CLI descriptor area for each type of interface is automatically allocated
when an SQL-statement is allocated. The SQL/CLI application may allocate additional CLI descriptor areas
and nominate them for use as the interface for the description of dynamic parameter values or the description
of target specifications by using the routine SetStmtAttr. The SQL/CLI application can determine the handle
value of the CLI descriptor area currently being used for a specific interface by using the routine GetStmtAttr.
The GetDescField and GetDescRec routines enable information to be retrieved from a CLI descriptor area. The
CopyDesc routine enables the contents of a CLI descriptor area to be copied to another CLI descriptor area.

When a <dynamic select statement> or <dynamic single row select statement> is prepared or executed imme-
diately, a description of the result columns is automatically provided in the applicable CLI implementation
descriptor area. In this case, the SQL/CLI application may additionally retrieve information by using the
DescribeCol and/or the ColAttribute routine to obtain a description of a single result column and by using the
NumResultCols routine to obtain a count of the number of result columns. The SQL/CLI application sets values
in the CLI application descriptor area for the description of the corresponding target specifications either
explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindCol.

When an SQL-statement is prepared or executed immediately, a description of the dynamic parameters is
automatically provided in the applicable CLI implementation descriptor area if this facility is supported by the
current SQL-connection. An attribute associated with the allocated SQL-connection indicates whether this
facility is supported. The value of the attribute may be retrieved using the routine GetConnectAttr. Regardless
of whether automatic description is supported, all dynamic input and input/output parameters shall be defined
in the application descriptor area before SQL-statement execution. This can be done either explicitly, by using
the routines SetDescField and SetDescRec, or implicitly, by using the routine BindParameter. The value of a
dynamic input or input/output parameter may be established before SQL-statement execution (immediate
parameter value) or may be provided during SQL-statement execution (deferred parameter value). Its description
in the CLI descriptor area determines which method is in use. The ParamData routine is used to cycle through
and process deferred input and input/output parameter values. The PutData routine is used to provide the deferred
values. The PutData routine also enables the values of character string input and input/output parameters to be
provided piece by piece.

Before a <call statement> is prepared or executed immediately, the SQL/CLI application may choose whether
or not to bind any dynamic output parameters in the CLI application descriptor area. This can be done either
explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindParam-
eter. After execution of the statement, values of unbound output and input/output parameters can be individually
retrieved using the GetParamData routine. The GetParamData routine also enables the retrieval of the values
of character and binary string output and input/output parameters to be accomplished piece by piece.

When a <dynamic select statement> or <dynamic single row select statement> is executed, a cursor is implicitly
declared and opened. The cursor name can be supplied by the SQL/CLI application by using the routine
SetCursorName. If a cursor name is not supplied by the SQL/CLI application, an implementation-dependent
cursor name is generated. The cursor name can be retrieved by using the GetCursorName routine.

The Fetch and FetchScroll routines are used to position an open cursor on a row and to retrieve the values of
bound columns for that row. A bound column is one whose target specification in the specified CLI descriptor
area defines a location for the target value. The Fetch routine always positions the open cursor on the next row,
whereas the FetchScroll routine may be used to position the open cursor on any of its rows. At the time that
the cursor is implicitly declared, the value of the CURSOR SCROLLABLE statement attribute shall be
SCROLLABLE, allowing the use of FetchScroll with a FetchOrientation other than NEXT. The SQL/CLI
application can set the value of this attribute by using the SetStmtAttr routine and can retrieve the current value
of the attribute by using the GetStmtAttr routine. The Fetch and FetchScroll routines can also retrieve multiple
rows in a single call; the set of rows thus retrieved is called a rowset. This is accomplished by setting the

8 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

ARRAY_SIZE field of the applicable application row descriptor to the desired number of rows. Note that the
single row fetch is just a special case of multi-row fetch, where the rowset size is 1 (one).

Values for unbound columns can be individually retrieved by using the GetData routine. The GetData routine
also enables the retrieval of the values of character and binary string columns to be accomplished piece by
piece. The current row of a cursor can be deleted or updated by executing a <preparable dynamic delete statement:
positioned> or a <preparable dynamic update statement: positioned>, respectively, for that cursor under a dif-
ferent allocated SQL-statement to the one under which the cursor was opened. The CloseCursor routine enables
a cursor to be closed.

Result sets can be returned to the SQL/CLI application as a result of invoking the Execute or ExecDirect routine,
supplying a statement handle whose current statement is a <call statement>. Such result sets are described and
processed in the same way as outlined above for the result sets produced by the execution of a <dynamic select
statement>. Multiple result sets may result from the execution of a single <call statement>. These result sets
are returned as an ordered set of result sets that can be processed one at a time or in parallel. To process the
result sets one at a time, once the processing of a given result set is complete, the MoreResults routine is used
to determine whether there are any additional result sets and, if there are, to position the cursor before the first
row in the next result set. To process the result sets in parallel, the NextResult routine is used to determine
whether there are any additional result sets and, if there are, to position a cursor before the first row in the next
result set.

Special routines, called catalog routines are available to return result sets from the Information Schema. These
routines are:

— ColumnPrivileges: Returns a list of the privileges held on the columns whose names adhere to the requested
pattern(s) within a single specified table. Most of this information can also be obtained by using the
ExecDirect routine to issue an appropriate query on the COLUMN_PRIVILEGES view of the Information
Schema.

— Columns: Returns the column names and attributes for all columns whose names adhere to the requested
pattern(s). Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the COLUMNS view of the Information Schema.

— ForeignKeys: Returns either the primary key of a single specified table together with the foreign keys in
all other tables that reference that primary key or the foreign keys of a single specified table together with
all the primary and unique keys in all other tables that are referenced by those foreign keys. Most of this
information can also be obtained by using the ExecDirect routine to issue an appropriate query on the
TABLE_CONSTRAINTS view and the REFERENTIAL_CONSTRAINTS view of the Information Schema.

— PrimaryKeys: Returns a list of the columns that constitute the primary key of a single specified table. Most
of this information can also be obtained by using the ExecDirect routine to issue an appropriate query on
the TABLE_CONSTRAINTS view and the KEY_COLUMN_USAGE view of the Information Schema.

— SpecialColumns: Returns a list of the columns which can uniquely identify any row within a single specified
table. Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate
query on the COLUMNS view of the Information Schema.

— Tables: Returns information about the tables whose names adhere to the requested pattern(s) and type(s).
Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate query
on the TABLES view of the Information Schema.

— TablePrivileges: Returns a list of the privileges held on tables whose names adhere to the requested pattern(s).
Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate query
on the TABLE_PRIVILEGES view of the Information Schema.

Concepts 9

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

These special routines are only available for a small portion of the metadata that is available in the Information
Schema. Other metadata (for example, that about SQL-invoked routines, triggers, and user-defined types) can
be obtained by executing appropriate queries on the views of the Information Schema.

The GetPosition, GetLength, and GetSubString routines can each be used with its own independent statement
handle to access a string value at the server that is represented by a Large Object locator in order to do any of
the following:

— The GetPosition routine may be used to determine whether a given substring exists within that string and,
if it does, to obtain an integer value that indicates the starting position of the first appearance of the given
substring.

— The GetLength routine may be used to obtain the length of that string as an integer.

— The GetSubString routine may be used to retrieve a portion of a string, or alternatively, to create a new
Large Object value at the server which is a portion of the string and to return a Large Object locator that
represents that value.

The Error, GetDiagField, and GetDiagRec routines obtain diagnostic information about the most recent routine
operating on a particular resource. The Error routine always retrieves information from the next status record,
whereas the GetDiagField and GetDiagRec routines may be used to retrieve information from any status record.

The number of rows affected by the last executed SQL-statement can be obtained by using the RowCount or
GetDiagField routine.

An SQL-transaction is terminated by using the EndTran routine. An SQL-transaction is implicitly initiated
whenever a CLI routine is invoked that requires the context of an SQL-transaction and no SQL-transaction is
active. An SQL-transaction is explicitly started, and its characteristics set, by using the StartTran routine.

NOTE 1 — Applications are prohibited from using the ExecDirect or Execute routines to execute <start transaction statement>s,
<commit statement>s, <rollback statement>s, and <release savepoint statement>s.

The Cancel routine is used to cancel the execution of a concurrently executing SQL/CLI routine; it is also used
to terminate the processing of deferred parameter values and the execution of the associated SQL-statement.

The GetFeatureInfo, GetFunctions, GetInfo, GetSessionInfo, and GetTypeInfo routines are used to obtain
information about the implementation. The DataSources routine returns a list of names that identify SQL-servers
to which the SQL/CLI application may be able to connect and returns a description of each such SQL-server.

4.2 Return codes

The execution of a CLI routine causes one or more conditions to be raised. The status of the execution is indicated
by a code that is returned either as the result of invoking a CLI routine that is a CLI function or as the value of
the ReturnCode argument of a CLI routine that is a CLI procedure.

The return code values and meanings are described in the following list. If more than one return code is possible,
then the one appearing later in the list is the one returned.

— A value of 0 (zero) indicates Success. The CLI routine executed successfully.

— A value of 1 (one) indicates Success with information. The CLI routine executed successfully but a
completion condition was raised: warning.

10 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

— A value of 100 indicates No data found. The CLI routine executed successfully but a completion condition
was raised: no data.

— A value of 99 indicates Data needed. The CLI routine did not complete its execution because additional
data is needed. An exception condition was raised: CLI-specific condition — dynamic parameter value
needed.

— A value of –1 indicates Error. The CLI routine did not execute successfully. An exception condition other
than CLI-specific condition — invalid handle or CLI-specific condition — dynamic parameter value needed
was raised.

— A value of –2 indicates Invalid handle. The CLI routine did not execute successfully because an exception
condition was raised: CLI-specific condition — invalid handle.

After the execution of a CLI routine, the values of every output argument that corresponds to an output
parameter whose value is not explicitly defined by this part of ISO/IEC 9075 is implementation-dependent.

In addition to providing the return code, for all CLI routines other than Error, GetDiagField, and GetDiagRec,
the SQL/CLI implementation records information about completion conditions and about exception conditions
other than CLI-specific condition — invalid handle in the diagnostics area associated with the resource being
utilized. The resource being utilized by a routine is the resource identified by its input handle. In the case of
CopyDesc, which takes two input handles, the resource being utilized is the one identified by TargetDescHandle.

4.3 Diagnostics areas in SQL/CLI

Each diagnostics area comprises header information consisting of fields that contain general information
relating to the routine that was executed and zero (0) or more status records containing information about
individual conditions that occurred during the execution of the CLI routine. A condition that causes a status
record to be generated is referred to as a status condition.

At the beginning of the execution of any CLI routine other than Error, GetDiagField, and GetDiagRec, the
diagnostics area for the resource being utilized is emptied. If the execution of such a routine does not result in
the exception condition CLI-specific condition — invalid handle or the exception condition CLI-specific condition
— dynamic parameter value needed, then:

— Header information is generated in the diagnostics area.

— If the routine's return code indicates Success, then no status records are generated.

— If the routine's return code indicates Success with information or Error, then one or more status records
are generated.

— If the routine's return code indicates No data found, then no status record is generated corresponding to
SQLSTATE value '02000' but there may be status records generated corresponding to SQLSTATE value
'02nnn', where 'nnn' is an implementation-defined subclass value.

When Fetch or FetchScroll is invoked, the resulting rowset has one or more rows, and exceptions or warnings
are generated, then the corresponding records in the diagnostics area have the ROW_NUMBER field set to the
row number of the row in the rowset associated with the exceptions or warnings. If a status record does not
correspond to any row in the rowset, or the record is generated as a result of calling a routine other than Fetch
or FetchScroll, the ROW_NUMBER field is set to zero. The COLUMN_NUMBER field of the status record

Concepts 11

CD 9075-3:200x(E)
4.2 Return codes

contains the column number (if any) to which this exception or warning condition applies. If the status record
does not apply to any column, then COLUMN_NUMBER is set to zero.

Status records in the diagnostics area are ordered by ROW_NUMBER. If multiple status records are generated
for the same ROW_NUMBER value, then the order in which the second and subsequent of those status records
appear is implementation-dependent. Which of those status records appears first is also implementation-
dependent, except that:

— Status records corresponding to transaction rollback have precedence over status records corresponding
to other exceptions, which in turn have precedence over status records corresponding to the completion
condition no data, which in turn have precedence over status records corresponding to the completion
condition warning.

— Apart from any status records corresponding to an implementation-specified no data, any status record
corresponding to an implementation-specified condition that duplicates, in whole or in part, a condition
defined in this part of ISO/IEC 9075 shall not be the first status record.

The routines GetDiagField and GetDiagRec retrieve information from a diagnostics area. The SQL/CLI appli-
cation identifies which diagnostics area is to be accessed by providing the handle of the relevant resource as
an input argument. The routines return a result code but do not modify the identified diagnostics area.

The Error routine also retrieves information from a diagnostics area. The Error routine retrieves the status
records in the identified diagnostics area one at a time but does not permit already processed status records to
be retrieved. Error returns a result code but does not modify the identified diagnostics area.

The RowCount routine retrieves the ROW_COUNT field from the diagnostics area for the specified statement
handle. RowCount returns a result code and may cause status records to be generated.

A CLI diagnostics area comprises the header fields specified under “Header fields” Table 1, “Header fields in
SQL/CLI diagnostics areas”, as well as zero (0) or more status records, each of which comprises the fields
specified under “Status record fields” Table 2, “Status record fields in SQL/CLI diagnostics areas”.

Table 1 — Header fields in SQL/CLI diagnostics areas

Data typeField

CHARACTER VARYING (L1)†DYNAMIC_FUNCTION

INTEGERDYNAMIC_FUNCTION_CODE

INTEGERMORE

INTEGERNUMBER

SMALLINTRETURNCODE

INTEGERROW_COUNT

INTEGERTRANSACTIONS_COMMITTED

INTEGERTRANSACTIONS_ROLLED_BACK

12 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.3 Diagnostics areas in SQL/CLI

Data typeField

INTEGERTRANSACTION_ACTIVE

Implementation-defined data typeImplementation-defined header field

† Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less than
254.

Table 2 — Status record fields in SQL/CLI diagnostics areas

Data typeField

CHARACTER VARYING (L)†CATALOG_NAME

CHARACTER VARYING (L1)†CLASS_ORIGIN

CHARACTER VARYING (L)†COLUMN_NAME

INTEGERCOLUMN_NUMBER

CHARACTER VARYING (L)†CONDITION_IDENTIFIER

INTEGERCONDITION_NUMBER

CHARACTER VARYING (L)†CONNECTION_NAME

CHARACTER VARYING (L)†CONSTRAINT_CATALOG

CHARACTER VARYING (L)†CONSTRAINT_NAME

CHARACTER VARYING (L)†CONSTRAINT_SCHEMA

CHARACTER VARYING (L)†CURSOR_NAME

INTEGERMESSAGE_LENGTH

INTEGERMESSAGE_OCTET_LENGTH

CHARACTER VARYING (L1)†MESSAGE_TEXT

INTEGERNATIVE_CODE

CHARACTER VARYING (L)†PARAMETER_MODE

CHARACTER VARYING (L)†PARAMETER_NAME

Concepts 13

CD 9075-3:200x(E)
4.3 Diagnostics areas in SQL/CLI

Data typeField

INTEGERPARAMETER_ORDINAL_POSITION

CHARACTER VARYING (L)†ROUTINE_CATALOG

CHARACTER VARYING (L)†ROUTINE_NAME

CHARACTER VARYING (L)†ROUTINE_SCHEMA

INTEGERROW_NUMBER

CHARACTER VARYING (L)†SCHEMA_NAME

CHARACTER VARYING (L)†SERVER_NAME

CHARACTER (5)SQLSTATE

CHARACTER VARYING (L)†SPECIFIC_NAME

CHARACTER VARYING (L1)†SUBCLASS_ORIGIN

CHARACTER VARYING (L)†TABLE_NAME

CHARACTER VARYING (L)†TRIGGER_CATALOG

CHARACTER VARYING (L)†TRIGGER_NAME

CHARACTER VARYING (L)†TRIGGER_SCHEMA

Implementation-defined data typeImplementation-defined status field

† Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less than
254.

All diagnostics area fields specified in other parts of ISO/IEC 9075 that are not included in this table are not
applicable to SQL/CLI.

4.3.1 Setting of ROW_NUMBER and COLUMN_NUMBER fields

Except where otherwise specified in this part of ISO/IEC 9075, the ROW_NUMBER and COLUMN_NUMBER
fields in a status record are always 0 (zero).

14 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.3 Diagnostics areas in SQL/CLI

4.4 Miscellaneous characteristics

4.4.1 Handles

The AllocHandle routine returns a handle that uniquely identifies the allocated resource. Although the data
type of a handle parameter is INTEGER, its value has no meaning in any other context and should not be used
as a numeric operand or modified in any way.

In general, if the related resource cannot be allocated, then a handle value of zero is returned. However, even
if a resource has been successfully allocated, processing of that resource can subsequently fail due to memory
constraints as follows:

— If additional memory is required but is not available, then an exception condition is raised: CLI-specific
condition — memory allocation error.

— If previously allocated memory cannot be accessed, then an exception condition is raised: CLI-specific
condition — memory management error.

NOTE 2 — No diagnostic information is generated in this case.

The validity of a handle in a compilation unit other than the one in which the identified resource was allocated
is implementation-defined.

Specifying (the address of) a valid handle as the output handle for an invocation of AllocHandle does not have
the effect of reinitializing the identified resource. Instead, a new resource is allocated and a new handle value
overwrites the old one.

4.4.2 Null terminated strings

An input character string provided by the SQL/CLI application may be terminated by the implementation-
defined null character that terminates C character strings. If this technique is used, the application may set the
associated length argument to either the length of the string excluding the null terminator or to –3, indicating
NULL TERMINATED.

If the NULL TERMINATION attribute for the SQL-environment is True, then all output character strings
returned by the SQL/CLI implementation are terminated by the implementation-defined null character that
terminates C character strings. If the NULL TERMINATION attribute is False, then output character strings
are not null terminated.

4.4.3 Null pointers

If the programming language of the invoking SQL/CLI application supports pointers, then the SQL/CLI
application may provide a zero-valued pointer, referred to as a null pointer, in the following circumstances:

— In lieu of an output argument that is to receive the length of a returned character string. This indicates that
the SQL/CLI application wishes to prohibit the return of this information.

Concepts 15

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

— In lieu of other output arguments where specifically allowed by this part of ISO/IEC 9075. This indicates
that the SQL/CLI application wishes to prohibit the return of this information.

— In lieu of input arguments where specifically allowed by this part of ISO/IEC 9075. The semantics of such
a specification depend on the context.

If the SQL/CLI application provides a null pointer in any other circumstances, then an exception condition is
raised: CLI-specific condition — invalid use of null pointer.

If the NULL TERMINATION attribute for the SQL-environment is False, then specifying a zero buffer size
for an output argument is equivalent to specifying a null pointer for that output argument.

4.4.4 Environment attributes

Environment attributes are associated with each allocated SQL-environment and affect the behavior of CLI
functions in that SQL-environment.

The GetEnvAttr routine enables the SQL/CLI application to determine the current value of a specific attribute.
For attributes that may be set by the user, the SetEnvAttr routine enables the SQL/CLI application to set the
value of a specific attribute. Attribute values may be set by the SQL/CLI application whenever there are no
SQL-connections allocated within the SQL-environment.

Table 16, “Codes used for environment attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each attribute its name, code value, data type, possible values,
and whether the attribute may be set using SetEnvAttr.

The NULL TERMINATION attribute determines whether output character strings are null terminated by the
SQL/CLI implementation. The attribute is set to True when an SQL-environment is allocated.

4.4.5 Connection attributes

Connection attributes are associated with each allocated SQL-connection and affect the behavior of CLI functions
operating in the context of that allocated SQL-connection.

The GetConnectAttr routine enables the SQL/CLI application to determine the current value of a specific con-
nection attribute. For connection attributes that may be set by the user, the SetConnectAttr routine enables the
SQL/CLI application to set the value of a specific connection attribute.

Table 17, “Codes used for connection attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each connection attribute its name, code value, data type,
possible values and whether the connection attribute may be set using SetConnectAttr.

The POPULATE IPD attribute determines whether the SQL/CLI implementation will populate the implemen-
tation parameter descriptor with an item descriptor area for each <dynamic parameter specification> when an
SQL-statement is prepared or executed immediately. The POPULATE IPD attribute is automatically set each
time an SQL-connection is established for the allocated SQL-connection.

The SAVEPOINT NAME connection attribute specifies the savepoint to be referenced in an invocation of the
EndTran routine that uses the SAVEPOINT NAME ROLLBACK or SAVEPOINT NAME RELEASE Com-

16 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

pletionType, respectively. The SAVEPOINT NAME attribute is set to a zero-length string when the SQL-
connection is allocated.

4.4.6 Statement attributes

Statement attributes are associated with each allocated SQL-statement and affect the processing of SQL-state-
ments under that allocated SQL-statement.

The GetStmtAttr routine enables the SQL/CLI application to determine the current value of a specific statement
attribute. For statement attributes that may be set by the user, the SetStmtAttr routine enables the SQL/CLI
application to set the value of a specific statement attribute.

Table 18, “Codes used for statement attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each statement attribute its name, code value, data type, possible
values, and whether the statement attribute may be set by using SetStmtAttr.

The APD HANDLE statement attribute is the value of the handle of the current application parameter
descriptor for the allocated SQL-statement. The statement attribute is set to the value of the handle of the
automatically allocated application parameter descriptor when the SQL-statement is allocated.

The ARD HANDLE statement attribute is the value of the handle of the current application row descriptor for
the allocated SQL-statement. The statement attribute is set to the value of the handle of the automatically allocated
application row descriptor when the SQL-statement is allocated.

The IPD HANDLE statement attribute is the value of the handle of the implementation parameter descriptor
associated with the allocated SQL-statement. The statement attribute is set to the value of the handle of the
automatically allocated implementation parameter descriptor when the SQL-statement is allocated.

The IRD HANDLE statement attribute is the value of the handle of the implementation row descriptor associated
with the allocated SQL-statement. The statement attribute is set to the value of the handle of the automatically
allocated implementation row descriptor when the SQL-statement is allocated.

The CURSOR SCROLLABLE statement attribute determines the scrollability implicitly declared when Execute
or ExecDirect are invoked. The statement attribute is set to NONSCROLLABLE when the SQL-statement is
allocated. The CURSOR SENSITIVITY statement attribute determines the sensitivity to changes of the cursor
implicitly declared when Execute or ExecDirect are invoked. The statement attribute is set to ASENSITIVE
when the SQL-statement is allocated.

The CURSOR HOLDABLE statement attribute determines the holdability of the cursor implicitly declared
when Execute or ExecDirect are invoked. The statement attribute is set to HOLDABLE or NONHOLDABLE
when the statement is allocated, depending on the values of the CURSOR COMMIT BEHAVIOR item used
by the GetInfo routine.

The statement attribute CURRENT OF POSITION identifies the row in the rowset to which a positioned update
or delete operation applies. This is set to 1 (one) when an SQL-statement is initially allocated. It is reset to 1
(one) whenever Fetch or FetchScroll are successfully executed.

The NEST DESCRIPTOR statement attribute determines whether nested descriptor items are permitted in a
CLI descriptor. Nested descriptor items are used to describe ROW, ARRAY, and MULTISET data types. The
statement attribute is set to FALSE when the SQL-statement is allocated.

Concepts 17

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

4.4.7 CLI descriptor areas

A CLI descriptor area provides an interface for a description of <dynamic parameter specification>s, <dynamic
parameter specification> values, result columns of <dynamic select statement>s and <dynamic single row select
statement>s, or <target specification>s for the result columns.

Each descriptor area comprises header fields and zero or more item descriptor areas. The header fields are
specified in Table 6, “Fields in SQL/CLI row and parameter descriptor areas”. The header fields include a
COUNT field that indicates the number of item descriptor areas and an ALLOC_TYPE field that indicates
whether the CLI descriptor area was allocated by the user or automatically allocated by the SQL/CLI implemen-
tation.

The header fields include ARRAY_SIZE, ARRAY_STATUS_POINTER, and ROWS_PROCESSED_POINTER.
These three fields are used to support the fetching of multiple rows with one invocation of Fetch or FetchScroll.

Each CLI item descriptor area consists of the fields specified following “Status record fields” in Table 6, “Fields
in SQL/CLI row and parameter descriptor areas”.

The CLI descriptor areas for the four interface types are referred to as an implementation parameter descriptor
(IPD), an application parameter descriptor (APD), an implementation row descriptor (IRD), and an application
row descriptor (ARD), respectively. IPDs and IRDs are collectively known as implementation descriptor areas;
APDs and ARDs are collectively known as application descriptor areas.

When an SQL-statement is allocated, a CLI descriptor area of each type is automatically allocated by the
SQL/CLI implementation. The ALLOC_TYPE fields for these CLI descriptor areas are set to indicate
AUTOMATIC. A CLI descriptor area allocated by the user has its ALLOC_TYPE field set to indicate USER,
and can only be used as an APD or ARD. The handle values of the IPD, IRD, current APD, and current ARD
are attributes of the allocated SQL-statement. The SQL/CLI application can determine the current values of
these attributes by using the routine GetStmtAttr. The current APD and ARD are initially the automatically-
allocated APD and ARD, respectively, but can subsequently be changed by changing the corresponding attribute
value using the routine SetStmtAttr.

The routines GetDescField and GetDescRec enable information to be retrieved from any CLI descriptor area.
The routines SetDescField and SetDescRec enable information to be set in any CLI descriptor area except an
IRD. The routine BindCol implicitly sets information in the current ARD. The routine BindParameter implicitly
sets information in the current APD and the current IPD. The CopyDesc routine enables the contents of any
CLI descriptor area to be copied to any CLI descriptor area except an IRD.

NOTE 3 — Although there is no need to set a DATA_POINTER field in the IPD to align with the consistency check that applies in the
case of an APD or ARD, setting this field causes the item descriptor area to be validated.

4.4.8 Obtaining diagnostics during multi-row fetch

When Fetch or FetchScroll is used to fetch a rowset, exceptions or warnings may be raised during the retrieval
of one or more rows in the rowset. The status of each row (that is, information about whether that row in the
rowset was successfully retrieved or not) is available in the array addressed by the ARRAY_STATUS_POINTER
field of the applicable IRD. The cardinality of this array is the same as the ARRAY_SIZE field of the corre-
sponding ARD. For each row in the rowset, the corresponding element of this array has one of the following
values:

— A value of 0 (zero) indicates Row success, meaning that the row was fetched successfully.

18 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

— A value of 6 indicates Row success with information, meaning that the row was fetched successfully, but
a completion condition was raised: warning.

— A value of 3 indicates No row, meaning that there is no row at this position in the rowset. This condition
occurs when a partial rowset is retrieved because the result set ended.

— A value of 5 indicates Row error, meaning that the row was not fetched successfully and an exception
condition was raised.

Each Row success with information or Row Error generates one or more status records in the diagnostics
area. The ROW_NUMBER field for each status record has the value of the row position within the rowset to
which this status record corresponds.

4.5 Client-server operation

This Subclause modifies Subclause 4.39, “Client-server operation”, in ISO/IEC 9075-2.

Insert this paragraph If the execution of a CLI routine causes the implicit or explicit execution of an <SQL
procedure statement> by an SQL-server, diagnostic information is passed in an implementation-dependent
manner to the SQL-client and then into the appropriate diagnostics area. The effect on diagnostic information
of incompatibilities between the character repertoires supported by the SQL-client and the SQL-server is
implementation-dependent.

Concepts 19

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

(Blank page)

20 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

5 Call-Level Interface specifications

This Clause is modified by Clause 19, “Call-Level Interface specifications”, in ISO/IEC 9075-9.

5.1 <CLI routine>

This Subclause is modified by Subclause 19.1, “<CLI routine>”, in ISO/IEC 9075-9.

Function

Describe SQL/CLI routines in a generic fashion.

Format

<CLI routine> ::=
<CLI routine name> <CLI parameter list> [<CLI returns clause>]

<CLI routine name> ::=
<CLI name prefix><CLI generic name>

<CLI name prefix> ::=
<CLI by-reference prefix>

| <CLI by-value prefix>

<CLI by-reference prefix> ::=
SQLR

<CLI by-value prefix> ::=
SQL

<CLI generic name> ::=
AllocConnect

| AllocEnv
| AllocHandle
| AllocStmt
| BindCol
| BindParameter
| Cancel
| CloseCursor
| ColAttribute
| ColumnPrivileges
| Columns
| Connect
| CopyDesc
| DataSources
| DescribeCol
| Disconnect

Call-Level Interface specifications 21

CD 9075-3:200x(E)
5.1 <CLI routine>

| EndTran
| Error
| ExecDirect
| Execute
| Fetch
| FetchScroll
|ForeignKeys
| FreeConnect
| FreeEnv
| FreeHandle
| FreeStmt
| GetConnectAttr
| GetCursorName
| GetData
| GetDescField
| GetDescRec
| GetDiagField
| GetDiagRec
| GetEnvAttr
| GetFeatureInfo
| GetFunctions
| GetInfo
| GetLength
| GetParamData
| GetPosition
| GetSessionInfo
| GetStmtAttr
| GetSubString
| GetTypeInfo
| MoreResults
| NextResult
| NumResultCols
| ParamData
| Prepare
| PrimaryKeys
| PutData
| RowCount
| SetConnectAttr
| SetCursorName
| SetDescField
| SetDescRec
| SetEnvAttr
| SetStmtAttr
| SpecialColumns
| StartTran
| TablePrivileges
| Tables
| <implementation-defined CLI generic name>

<CLI parameter list> ::=
<left paren> <CLI parameter declaration>
 [{ <comma> <CLI parameter declaration> }...] <right paren>

<CLI parameter declaration> ::=
<CLI parameter name> <CLI parameter mode> <CLI parameter data type>

<CLI parameter name> ::=
!! See the individual CLI routine definitions

22 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

<CLI parameter mode> ::=
IN

| OUT
| DEFIN
| DEFOUT
| DEF

<CLI parameter data type> ::=
INTEGER

| SMALLINT
| ANY
| CHARACTER <left paren> <length> <right paren>

<CLI returns clause> ::=
RETURNS SMALLINT

<implementation-defined CLI generic name> ::=
!! See the Syntax Rules

Syntax Rules

1) <CLI routine> is a pre-defined routine written in a programming language that is invoked by a compilation
unit of the same programming language. Let HL be that programming language.

2) <CLI routine> that contains a <CLI returns clause> is called a CLI function. A <CLI routine> that does
not contain a <CLI returns clause> is called a CLI procedure.

3) There shall be no <separator> between the <CLI name prefix> and the <CLI generic name>.

4) For each CLI function CF, there is a corresponding CLI procedure CP, with the same <CLI routine name>.
The <CLI parameter list> for CP is the same as the <CLI parameter list> for CF but with the following
additional <CLI parameter declaration>:

ReturnCode OUT SMALLINT

5) HL shall support either the invocation of CF or the invocation of CP. It is implementation-defined which
is supported.

6) Case:

a) If <CLI parameter mode> is IN, then the parameter is an input parameter. The value of an input argument
is established when a CLI routine is invoked.

b) If <CLI parameter mode> is OUT, then the parameter is an output parameter. The value of an output
argument is established when a CLI routine is executed.

c) If <CLI parameter mode> is DEFIN, then the parameter is a deferred input parameter. The value of a
deferred input argument for a CLI routine R is not established when R is invoked, but subsequently
during the execution of a related CLI routine.

d) If <CLI parameter mode> is DEFOUT, then the parameter is a deferred output parameter. The value
of a deferred output argument for a CLI routine R is not established by the execution of R but subse-
quently by the execution of a related CLI routine.

Call-Level Interface specifications 23

CD 9075-3:200x(E)
5.1 <CLI routine>

e) If <CLI parameter mode> is DEF, then the parameter is a deferred parameter. The value of a deferred
argument for a CLI routine R is not established by the execution of R but subsequently by the execution
of a related CLI routine.

7) The value of an output, deferred output, deferred input, or deferred parameter is an address. It is either a
non-pointer host variable passed by reference or a pointer host variable passed by value.

8) A by-value version of a CLI routine is a version that expects each of its non-character input parameters to
be provided as actual values. A by-reference version of a CLI routine is a version that expects each of its
input parameters to be provided as an address. By-value and by-reference versions of the CLI routines shall
be supported according to Table 3, “Supported calling conventions of SQL/CLI routines by language”.

Table 3 — Supported calling conventions of SQL/CLI routines by language

By-referenceBy-valueLanguage

RequiredOptionalAda (ISO 8652)

OptionalRequiredC (ISO/IEC 9899)

RequiredOptionalCOBOL (ISO 1989)

RequiredNot supportedFortran (ISO/IEC 1539)

RequiredOptionalM (ISO/IEC 11756)

RequiredOptionalPascal (ISO/IEC 7185 and ISO/IEC
10206)

RequiredOptionalPL/I (ISO 6160)

9) If a <CLI routine> is a by-reference routine, then its <CLI routine name> shall contain a <CLI by-reference
prefix>. Otherwise, its <CLI routine name> shall contain a <CLI by-value prefix>.

10) The <implementation-defined CLI generic name> for an implementation-defined CLI function shall be
different from the <CLI generic name> of any other CLI function. The <implementation-defined CLI
generic name> for an implementation-defined CLI procedure shall be different from the <CLI generic
name> of any other CLI procedure.

11) Any <CLI routine name> that cannot be used by an implementation because of its length or because it is
made identical to some other <CLI routine name> by truncation is effectively replaced with an abbreviated
name according to the following rules:

a) Any <CLI by-value prefix> remains unchanged.

b) Any <CLI by-reference prefix> is replaced by SQR.

c) The <CLI generic name> is replaced by an abbreviated version according to Table 4, “Abbreviated
SQL/CLI generic names”.

24 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

Table 4 — Abbreviated SQL/CLI generic names

AbbreviationGeneric Name

ACAllocConnect

AEAllocEnv

AHAllocHandle

ASAllocStmt

BCBindCol

BPBindParameter

CANCancel

CCCloseCursor

COColAttribute

CPColumnPrivileges

COLColumns

CONConnect

CDCopyDesc

DSDataSources

DCDescribeCol

DISDisconnect

ETEndTran

ERError

EDExecDirect

EXExecute

FTFetch

FTSFetchScroll

FKForeignKeys

FCFreeConnect

Call-Level Interface specifications 25

CD 9075-3:200x(E)
5.1 <CLI routine>

AbbreviationGeneric Name

FEFreeEnv

FHFreeHandle

FSFreeStmt

GCAGetConnectAttr

GCNGetCursorName

GDAGetData

GDFGetDescField

GDRGetDescRec

GXFGetDiagField

GXRGetDiagRec

GEAGetEnvAttr

GFIGetFeatureInfo

GFUGetFunctions

GIGetInfo

GLNGetLength

GPDGetParamData

GPOGetPosition

GSIGetSessionInfo

GSAGetStmtAttr

GSBGetSubString

GTIGetTypeInfo

MRMoreResults

NRNextResult

NRCNumResultCols

PRDParamData

26 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

AbbreviationGeneric Name

PRPrepare

PKPrimaryKeys

PTDPutData

RCRowCount

SCASetConnectAttr

SCNSetCursorName

SDFSetDescField

SDRSetDescRec

SEASetEnvAttr

SSASetStmtAttr

SCSpecialColumns

STNStartTran

TPTablePrivileges

TABTables

Implementation-defined abbreviationImplementation-
defined CLI routine

12) Let CR be a <CLI routine> and let RN be its <CLI routine name>. Let RNU be the value of UPPER(RN).

Case:

a) If HL supports case sensitive routine names, then the name used for the invocation of CR shall be RN.

b) If HL does not support <simple Latin lower case letter>s, then the name used for the invocation of CR
shall be RNU.

c) If HL does not support case sensitive routine names, then the name used for the invocation of CR shall
be RN or RNU.

13) Let operative data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, “SQL/CLI data type correspondences”. Refer to the two columns of the operative data
type correspondence table as the “SQL data type column” and the “host data type column”.

14) Let TI, TS, TC, and TV be the types listed in the host data type column for the rows that contains INTEGER,
SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively, in the SQL data type
column.

a) If TS is “None”, then let TS = TI.

Call-Level Interface specifications 27

CD 9075-3:200x(E)
5.1 <CLI routine>

b) If TC is “None”, then let TC = TV.

c) For each parameter P,

Case:

i) If the CLI parameter data type is INTEGER, then the type of the corresponding argument shall
be TI.

ii) If the CLI parameter data type is SMALLINT, then the type of the corresponding argument shall
be TS.

iii) If the CLI parameter data type is CHARACTER(L), then the type of the corresponding argument
shall be TC.

iv) If the CLI parameter data type is ANY, then

Case:

1) If HL is C, then the type of the corresponding argument shall be “void *”.

2) Otherwise, the type of the corresponding argument shall be any type (other than “None”)
listed in the host data type column.

d) If the CLI routine is a CLI function, then the type of the returned value is TS.

Access Rules

None.

General Rules

1) The rules for invocation of a <CLI routine> are specified in Subclause 5.2, “<CLI routine> invocation”.

Conformance Rules

1) Without Feature C001, “CLI routine invocation in Ada”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Ada.

2) Without Feature C002, “CLI routine invocation in C”, a conforming SQL/CLI application shall not contain
an invocation of a <CLI routine> written in C.

3) Without Feature C003, “CLI routine invocation in COBOL”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in COBOL.

4) Without Feature C004, “CLI routine invocation in Fortran”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Fortran.

5) Without Feature C005, “CLI routine invocation in MUMPS”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in M.

6) Without Feature C006, “CLI routine invocation in Pascal”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Pascal.

28 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

7) Without Feature C007, “CLI routine invocation in PL/I”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in PL/I.

Call-Level Interface specifications 29

CD 9075-3:200x(E)
5.1 <CLI routine>

5.2 <CLI routine> invocation

Function

Specify the rules for invocation of a <CLI routine>.

Syntax Rules

1) Let HL be the programming language of the invoking host program.

2) A CLI function or CLI procedure is invoked by the HL mechanism for invoking functions or procedures,
respectively.

3) Let RNM be the <CLI routine name> of the <CLI routine> invoked by the host program and let RN be the
SQL/CLI routine identified by RNM. The number of arguments provided in the invocation shall be the
same as the number of <CLI parameter declaration>s for RN.

4) Let DA be the data type of the i-th argument in the invocation and let DP be the <CLI parameter data type>
of the i-th <CLI parameter declaration> of RN. DA shall be the HL equivalent of DP as specified by the
rules of Subclause 5.1, “<CLI routine>”.

General Rules

1) If the value of any input argument provided by the host program is not a value of the data type of the
parameter, or if the value of any output argument resulting from the execution of the <CLI routine> is not
a value supported by the SQL/CLI application for that parameter, then the effect is implementation-defined.

2) Let GRN be the <CLI generic name> of RN.

3) When the <CLI routine> is called by the SQL/CLI application:

a) The values of all input arguments to RN are established.

b) Case:

i) If RN is a CLI routine with a statement handle as an input parameter, RN has no accompanying
handle type parameter, and GRN is not Error, then:

1) If the statement handle does not identify an allocated SQL-statement, then an exception
condition is raised: CLI-specific condition — invalid handle. Otherwise, let S be the allocated
SQL-statement identified by the statement handle.

2) If GRN is not Cancel, then the diagnostics area associated with S is emptied.

3) Let C be the allocated SQL-connection with which S is associated.

4) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist. Otherwise, let EC be the established
SQL-connection associated with C.

5) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

30 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.2 <CLI routine> invocation

6) If GRN is neither Cancel nor ParamData nor PutData and there is a deferred parameter
number associated with S, then an exception condition is raised: CLI-specific condition —
function sequence error.

7) RN is invoked.

ii) If RN is a CLI routine with a descriptor handle as an input parameter and RN has no accompa-
nying handle type parameter and GRN is not CopyDesc, then:

1) If the descriptor handle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition — invalid handle. Otherwise, let D be the allocated
CLI descriptor area identified by the descriptor handle.

2) The diagnostics area associated with D is emptied.

3) Let C be the allocated SQL-connection with which D is associated.

4) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist. Otherwise, let EC be the established
SQL-connection associated with C.

5) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

6) RN is invoked.

iii) Otherwise, RN is invoked.

4) Case:

a) If RN is a CLI function, then:

i) The values of all output arguments are established.

ii) Let RC be the return value.

b) If RN is a CLI procedure, then:

i) The values of all output arguments are established except for the argument associated with the
ReturnCode parameter.

ii) Let RC be the argument associated with the ReturnCode parameter.

5) Case:

a) If RN did not complete execution because it requires more input data, then:

i) RC is set to indicate Data needed.

ii) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.

b) If RN executed successfully, then:

i) Either a completion condition is raised: successful completion, or a completion condition is
raised: warning, or a completion condition is raised: no data.

ii) Case:

1) If a completion condition is raised: successful completion, then RC is set to indicate Success.

Call-Level Interface specifications 31

CD 9075-3:200x(E)
5.2 <CLI routine> invocation

2) If a completion condition is raised: warning, then RC is set to indicate Success with infor-
mation.

3) If a completion condition is raised: no data, then RC is set to indicate No data found.

c) If RN did not execute successfully, then:

i) All changes made to SQL-data or schemas by the execution of RN are canceled.

ii) One or more exception conditions are raised as determined by the General Rules of this and
other Subclauses of this part of ISO/IEC 9075 or by implementation-defined rules.

iii) Case:

1) If an exception condition is raised: CLI-specific condition — invalid handle, then RC is set
to indicate Invalid handle.

2) Otherwise, RC is set to indicate Error.

6) Case:

a) If GRN is neither Error nor GetDiagField nor GetDiagRec, and RC indicates neither Invalid handle
nor Data needed, then diagnostic information resulting from the execution of RN is placed into the
appropriate diagnostics area as specified in Subclause 4.2, “Return codes”, and Subclause 4.3, “Diag-
nostics areas in SQL/CLI”.

b) Otherwise, no diagnostics area is updated.

32 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.2 <CLI routine> invocation

5.3 Implicit set connection

Function

Specify the rules for an implicit SET CONNECTION statement.

General Rules

1) Let DC be the dormant SQL-connection specified in an application of this Subclause.

2) If an SQL-transaction is active for the current SQL-connection and the SQL-implementation does not
support transactions that affect more than one SQL-server, then an exception condition is raised: feature
not supported — multiple server transactions.

3) If DC cannot be selected, then an exception condition is raised: connection exception — connection failure.

4) The current SQL-connection CC and current SQL-session become a dormant SQL-connection and a dormant
SQL-session, respectively. The SQL-session context for CC is preserved and is not affected in any way by
operations performed over the selected SQL-connection.

NOTE 4 — The SQL-session context is defined in Subclause 4.37, “SQL-sessions”, in ISO/IEC 9075-2.

5) DC becomes the current SQL-connection and the SQL-session associated with DC becomes the current
SQL-session. The SQL-session context is restored to the same state as at the time DC became dormant.

NOTE 5 — The SQL-session context information is defined in Subclause 4.37, “SQL-sessions”, in ISO/IEC 9075-2.

6) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set to that
of the current SQL-connection.

Call-Level Interface specifications 33

CD 9075-3:200x(E)
5.3 Implicit set connection

5.4 Implicit cursor

Function

Specify the rules for an implicit DECLARE CURSOR and OPEN statement.

General Rules

1) Let SS and AS be a SELECT SOURCE and ALLOCATED STATEMENT specified in an application of this
Subclause.

2) If there is no cursor associated with AS, then a cursor is associated with AS and the cursor name associated
with AS becomes the name of the cursor.

3) The General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”, are applied
with OPEN as TYPE, SS as SOURCE, and AS as ALLOCATED STATEMENT.

4) If the value of the CURSOR SCROLLABLE attribute of AS is SCROLLABLE, then let CT be 'SCROLL';
otherwise, let CT be an empty string.

5) Case:

a) If the value of the CURSOR SENSITIVITY attribute of AS is INSENSITIVE, then let CS be 'INSEN-
SITIVE'.

b) If the value of the CURSOR SENSITIVITY attribute of AS is SENSITIVE, then let CS be 'SENSITIVE'.

c) Otherwise, let CS be 'ASENSITIVE'.

6) If the value of the CURSOR HOLDABLE attribute of AS is HOLDABLE, then let CH be 'WITH HOLD';
otherwise, let CH be an empty string.

7) Let CN be the name of the cursor associated with AS and let CR be the following <declare cursor>:

DECLARE CN CS CT CURSOR CH FOR SS

8) Cursor CN is opened in the following steps:

a) A copy of SS is effectively created in which:

i) Each <dynamic parameter specification> is replaced by the value of the corresponding dynamic
parameter.

ii) Each <value specification> generally contained in SS that is CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or
CURRENT_TRANSFORM_GROUP_FOR_TYPE <path-resolved user-defined type name> is
replaced by the value resulting from evaluation of CURRENT_USER, CURRENT_ROLE,
SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CURRENT_SCHEMA, CUR-
RENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or CURRENT_TRANS-
FORM_GROUP_FOR_TYPE <path-resolved user-defined type name>, respectively, with all
such evaluations effectively done at the same instant in time.

34 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.4 Implicit cursor

iii) Each <datetime value function> generally contained in SS is replaced by the value resulting
from evaluation of that <datetime value function>, with all such evaluations effectively done at
the same instant in time.

b) Let T be the table specified by the copy of SS.

c) A table descriptor for T is effectively created.

d) The General Rules of Subclause 14.1, “<declare cursor>”, in ISO/IEC 9075-2 are applied to CR.

e) Case:

i) If CR specifies INSENSITIVE, then a copy of T is effectively created and cursor CN is placed
in the open state and its position is before the first row of the copy of T.

ii) Otherwise, cursor CN is placed in the open state and its position is before the first row of T.

9) If CR specifies INSENSITIVE, and the SQL-implementation is unable to guarantee that significant changes
will be invisible through CR during the SQL-transaction in which CR is opened and every subsequent SQL-
transaction during which it may be held open, then an exception condition is raised: cursor sensitivity
exception — request rejected.

10) If CR specifies SENSITIVE, and the SQL-implementation is unable to guarantee that significant changes
will be visible through CR during the SQL-transaction in which CR is opened, then an exception condition
is raised: cursor sensitivity exception — request rejected.

NOTE 6 — The visibility of significant changes through a sensitive holdable cursor during a subsequent SQL-transaction is
implementation-defined.

11) Whether an implementation is able to disallow significant changes that would not be visible through a
currently open cursor is implementation-defined.

Call-Level Interface specifications 35

CD 9075-3:200x(E)
5.4 Implicit cursor

5.5 Implicit DESCRIBE USING clause

This Subclause is modified by Subclause 19.2, “Implicit DESCRIBE USING clause”, in ISO/IEC 9075-9.

Function

Specify the rules for an implicit DESCRIBE USING clause.

General Rules

1) Let S and AS be a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclause.

2) Let IRD and IPD be the implementation row descriptor and implementation parameter descriptor, respec-
tively, associated with AS.

3) Let HL be the programming language of the invoking host program.

4) The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE in IRD and IPD are respectively
a character string representation of the prepared statement and a numeric code that identifies the type of
the prepared statement.

5) A representation of the column descriptors of the <select list> columns for the prepared statement is stored
in IRD as follows:

a) Case:

i) If there is a select source associated with AS, then:

1) Let TBL be the table defined by S and let D be the degree of TBL.

Case:

A) If the value of the statement attribute NEST DESCRIPTOR is True, then let NSi,

1 (one) ≤ i ≤ D, be the number of subordinate descriptors of the descriptor for the i-th
column of T.

B) Otherwise, let NSi, 1 (one) ≤ i ≤ D, be 0 (zero).

2) TOP_LEVEL_COUNT is set to D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let

TD be D + ΣD
i=1 (NSi). COUNT is set to TD.

3) Let SL be the collection of <select list> columns of TBL.

4) Case:

A) If some subset of SL is the primary key of TBL, then KEY_TYPE is set to 1 (one).

B) If some subset of SL is the preferred key of TBL, then KEY_TYPE is set to 2.

C) Otherwise, KEY_TYPE is set to 0 (zero).

ii) Otherwise:

36 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

1) Let D be 0 (zero). Let TD be 0 (zero).

2) KEY_TYPE is set to 0 (zero).

b) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains the descriptor of the j-th column of TBL such that:

i) The descriptor for the first such column is assigned to the first descriptor area.

ii) The descriptor for the j+1-th column is assigned to the i+NSj+1-th item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly ordered
subordinate descriptors for the j-th column are assigned to contiguous item descriptor areas
starting at the i+1-th item descriptor area.

c) The descriptor of a column consists of values for LEVEL, TYPE, NULLABLE, NAME, UNNAMED,
KEY_MEMBER, and other fields depending on the value of TYPE as described below. Those fields
and fields that are not applicable for a particular value of TYPE are set to implementation-dependent
values. The DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields
are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, indicating the data type of the column or subordinate descriptor.

iii) Case:

1) If the value of LEVEL is 0 (zero), then:

A) If the resulting column is possibly nullable, then NULLABLE is set to 1 (one); otherwise
NULLABLE is set to 0 (zero).

B) If the column name is implementation-dependent, then NAME is set to the implementa-
tion-dependent name of the column and UNNAMED is set to 1 (one); otherwise, NAME
is set to the <derived column> name for the column and UNNAMED is set to 0 (zero).

C) Case:

I) If a <select list> column C is a member of a primary or preferred key of TBL,
then KEY_MEMBER is set to 1 (one).

II) Otherwise, KEY_MEMBER is set to 0 (zero).

2) Otherwise:

A) NULLABLE is set to 1 (one).

B) Case:

I) If the item descriptor area describes a field of a row type, then

Case:

1) If the name of the field is implementation-dependent, then NAME is set to
the implementation-dependent name of the field and UNNAMED is set to 1
(one).

Call-Level Interface specifications 37

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

2) Otherwise, NAME is set to the name of the field and UNNAMED is set to
0 (zero).

II) Otherwise, UNNAMED is set to 1 (one) and NAME is set to an implementation-
dependent value.

C) KEY_MEMBER is set to 0 (zero).

iv) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length or maximum
length in characters of the character string. OCTET_LENGTH is set to the maximum possible
length in octets of the character string. If HL is C, then the lengths specified in LENGTH
and OCTET_LENGTH do not include the implementation-defined null character that termi-
nates a C character string. CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
and CHARACTER_SET_NAME are set to the <character set name> of the character string's
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string's collation.

2) If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are both
set to the length or maximum length in octets of the binary string.

3) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

4) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

5) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, to indicate the specific datetime
data type, and PRECISION is set to the <time precision> or <timestamp precision> as
applicable.

6) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the interval
type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10, “Codes
associated with <interval qualifier> in SQL/CLI”, to indicate the specific <interval qualifier>,
DATETIME_INTERVAL_PRECISION is set to the <interval leading field precision>, and
PRECISION is set to the <interval fractional seconds precision>, if applicable.

7) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length in octets
of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

8) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined type
name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to the
CURRENT_TRANSFORM_GROUP_FOR_TYPE for the user-defined type.
USER_DEFINED_TYPE_CODE is set to a code as specified in Table 12, “Codes associated
with user-defined types in SQL/CLI”, to indicate the category of the user-defined type.

38 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of the
array type.

6) Let C be the allocated SQL-connection with which AS is associated.

7) If POPULATE IPD for C is False, then no further rules of this Subclause are applied.

8) If POPULATE IPD for C is True, then a descriptor for the <dynamic parameter specification>s for the
prepared statement is stored in IPD as follows:

a) Let D be the number of <dynamic parameter specification>s in S.

Case:

i) If the value of the statement attribute NEST DESCRIPTOR is True, then let NSi, 1 (one) ≤ i ≤ D,
be the number of subordinate descriptors of the descriptor for the i-th input dynamic parameter.

ii) Otherwise, let NSi, 1 (one) ≤ i ≤ D, be 0 (zero).

b) TOP_LEVEL_COUNT is set to D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let TD be D + ΣD
i=1

(NSi). COUNT is set to TD.

NOTE 7 — The KEY_TYPE field is not relevant in this case.

c) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains a descriptor of the j-th <dynamic parameter specification>
such that:

i) The descriptor for the first such <dynamic parameter specification> is assigned to the first
descriptor area.

ii) The descriptor for the j+1-th <dynamic parameter specification> is assigned to the i+NSj+1-th
item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly ordered
subordinate descriptors for the j-th <dynamic parameter specification> are assigned to contiguous
item descriptor areas starting at the i+1-th item descriptor area.

d) The descriptor of a <dynamic parameter specification> consists of values for LEVEL, TYPE, NUL-
LABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION,
PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPE-
CIFIC_NAME, and other fields depending on the value of TYPE as described below. Those fields and
fields that are not applicable for a particular value of TYPE are set to implementation-dependent values.
The DATA_POINTER, INDICATOR_POINTER, OCTET_LENGTH_POINTER,
RETURNED_CARDINALITY_POINTER, and KEY_MEMBER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, indicating the data type of the <dynamic parameter specification> or subordinate
descriptor.

iii) NULLABLE is set to 1 (one).

Call-Level Interface specifications 39

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

NOTE 8 — This indicates that the <dynamic parameter specification> can have the null value.

iv) KEY_MEMBER is set to 0 (zero).

v) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.

vi) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length or maximum
length in characters of the character string. OCTET_LENGTH is set to the maximum possible
length in octets of the character string. If HL is C, then the lengths specified in LENGTH
and OCTET_LENGTH do not include the implementation-defined null character that termi-
nates a C character string. CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
and CHARACTER_SET_NAME are set to the <character set name> of the character string's
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string's collation.

2) If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are both
set to the length or maximum length in octets of the binary string.

3) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

4) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

5) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, to indicate the specific datetime
data type, and PRECISION is set to the <time precision> or <timestamp precision> as
applicable.

6) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the interval
type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10, “Codes
associated with <interval qualifier> in SQL/CLI”, to indicate the specific <interval qualifier>,
DATETIME_INTERVAL_PRECISION is set to the <interval leading field precision>, and
PRECISION is set to the <interval fractional seconds precision>, if applicable.

7) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length in octets
of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

8) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined type
name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to the
CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type name>.

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of the
array type.

40 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

9) If LEVEL is 0 (zero) and the prepared statement being described is a <call statement>, then:

a) Let SR be the subject routine for the <routine invocation> of the <call statement>.

b) Let Dx be the x-th <dynamic parameter specification> simply contained in an SQL argument Ay of the
<call statement>.

c) Let Py be the y-th SQL parameter of SR.

NOTE 9 — A P whose <SQL parameter mode> is IN can be a <value expression> that contains zero, one, or more <dynamic
parameter specification>s. Thus:

— Every Dx maps to one and only one Py.

— Several Dx instances can map to the same Py.

— There can be Py instances that have no Dx instances that map to them.

d) The PARAMETER_MODE value in the descriptor for each Dx is set to the value from Table 11, “Codes
associated with <parameter mode> in SQL/CLI”, that indicates the <SQL parameter mode> of Py.

e) The PARAMETER_ORDINAL_POSITION value in the descriptor for each Dx is set to the ordinal
position of Py.

f) The PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, and PARAME-
TER_SPECIFIC_NAME values in the descriptor for each Dx is set to the values that identify the catalog,
schema, and specific name of SR.

Call-Level Interface specifications 41

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

5.6 Implicit EXECUTE USING and OPEN USING clauses

Function

Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

General Rules

1) Let T, S, and AS be the TYPE, SOURCE, and ALLOCATED STATEMENT specified in the rules of this
Subclause.

2) Let IPD, ARD, and APD be the current implementation parameter descriptor, current application row
descriptor, and current application parameter descriptor, respectively, for AS.

3) Let C be the allocated SQL-connection with which S is associated.

4) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specification>
values, respectively, for the statement being executed. Let D be the number of <dynamic parameter speci-
fication>s in S. Let NAPD be the value of COUNT for APD and let NIPD be the value of COUNT for IPD.

a) If NAPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

b) If NIPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

c) If NIPD is less than D, then an exception condition is raised: dynamic SQL error — using clause does
not match dynamic parameter specifications.

d) Let NIDAL be the number of item descriptor areas in IPD for which LEVEL is 0 (zero). If NIDAL is
greater than D, then it is implementation-defined whether an exception condition is raised: dynamic
SQL error — using clause does not match dynamic parameter specifications.

e) If the first NIPD item descriptor areas of IPD are not valid as specified in Subclause 5.13, “Description
of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause
does not match dynamic parameter specifications.

f) Let AD be the minimum of NAPD and NIPD.

g) For each of the first AD item descriptor areas of APD, if TYPE indicates DEFAULT, then:

i) Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the corresponding item descriptor area of IPD.

ii) The data type, precision, and scale of the described <dynamic parameter specification> value
(or part thereof, if the item descriptor area is a subordinate descriptor) are set to TP, P, and SC,
respectively, for the purposes of this invocation only.

h) If the first AD item descriptor areas of APD are not valid as specified in Subclause 5.13, “Description
of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause
does not match dynamic parameter specifications.

i) For the first AD item descriptor areas in APD:

42 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D, then
an exception condition is raised: dynamic SQL error — using clause does not match dynamic
parameter specifications.

i)

ii) If all of the following are true, then an exception condition is raised: dynamic SQL error — using
clause does not match dynamic parameter specifications.

1) The value of the host variable addressed by INDICATOR POINTER is not negative.

2) At least one of the following is true:

A) TYPE does not indicate ROW and the item descriptor area is not subordinate to an item
descriptor area for which the value of the host variable addressed by the INDICATOR
POINTER is not negative.

B) TYPE indicates ARRAY or ARRAY LOCATOR.

C) TYPE indicates MULTISET or MULTISET LOCATOR.

3) The value of the host variable addressed by DATA_POINTER is not a valid value of the
data type represented by the item descriptor area.

j) For each of the first AD item descriptor areas ADIDA in APD:

i) If the OCTET_LENGTH_POINTER field of ADIDA has the same non-zero value as the INDI-
CATOR_POINTER field of IDA, then SHARE is true for ADIDA; otherwise, SHARE is false
for ADIDA.

Case:

1) If SHARE is true for ADIDA and the value of the commonly addressed host variable is the
appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”,
then NULL is true for ADIDA.

2) If SHARE is false for ADIDA, INDICATOR_POINTER is not zero, and the value of the
host variable addressed by INDICATOR_POINTER is the appropriate 'Code' for SQL NULL
DATA in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for ADIDA.

3) Otherwise, NULL is false for ADIDA.

ii) If NULL is false for ADIDA, OCTET_LENGTH_POINTER is not 0 (zero), and the value of the
host variable addressed by OCTET_LENGTH_POINTER is the appropriate 'Code' for SQL
NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then DEFERRED is true for
ADIDA; otherwise, DEFERRED is false for ADIDA.

k) If all of the following are true for any item descriptor area in the first AD item descriptor areas of APD,
then an exception condition is raised: dynamic SQL error — using clause does not match dynamic
parameter specifications.

i) DEFERRED is true for the item descriptor area.

ii) Either of the following is true:

1) The value of LEVEL is zero and TYPE indicates ROW, ARRAY, or MULTISET.

2) LEVEL is greater than 0 (zero).

Call-Level Interface specifications 43

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

NOTE 10 — This rule states that a parameter whose type is ROW, ARRAY, or MULTISET shall be bound; it cannot
be a deferred parameter.

l) For each item descriptor area whose LEVEL is 0 (zero) and for each of its subordinate descriptor areas,
if any, for which DEFERRED is false in the first AD item descriptor areas of APD and whose corre-
sponding <dynamic parameter specification> has a <parameter mode> of PARAM MODE IN or
PARAM MODE INOUT, refer to the corresponding <dynamic parameter specification> value as an
immediate parameter value and refer to the corresponding <dynamic parameter specification> as an
immediate parameter.

m) Let IDA be the i-th item descriptor area of APD whose LEVEL value is 0 (zero). Let SDT be the data
type represented by IDA. The associated value of IDA, denoted by SV, is defined as follows.

Case:

i) If NULL is true for IDA, then SV is the null value.

ii) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are the
associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:

1) Let V be the value of the host variable addressed by DATA_POINTER.

2) Case:

A) If TYPE indicates CHARACTER, then

Case:

I) If OCTET_LENGTH_POINTER is zero or if OCTET_LENGTH_POINTER is
not zero and the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, then let L be
the number of characters of V that precede the implementation-defined null
character that terminates a C character string.

II) Otherwise, let Q be the value of the host variable addressed by
OCTET_LENGTH_POINTER and let L be the number of characters wholly
contained in the first Q octets of V.

B) Otherwise, let L be zero.

3) Let SV be V with effective data type SDT, as represented by the length value L and by the
values of the TYPE, PRECISION, and SCALE fields.

n) Let TDT be the effective data type of the i-th immediate parameter as represented by the values of the
TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IPD for which the LEVEL value is 0 (zero), and all its subordi-
nate descriptor areas.

o) Let SDT be the effective data type of the i-th bound parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

44 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the corresponding item descriptor area of APD for which the LEVEL is 0 (zero), and all its
subordinate descriptor areas.

p) Case:

i) If SDT is a locator type, then let TV be the value SV.

ii) If SDT and TDT are predefined types, then:

1) Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the i-th bound target.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”,
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

2) Let UDT be the effective data type of the actual i-th immediate parameter, defined to be the
data type represented by the values of the TYPE, LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the corresponding item descriptor
area of IPD if POPULATE IPD was True for C.

3) Case:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type UDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type UDT and the result is the value TV of the i-th immediate parameter.

Call-Level Interface specifications 45

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

B) Otherwise:

I) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”,
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) The <cast specification>

CAST (TV AS UDT)

is effectively performed and the result is the value of the i-th immediate parameter.

iii) If SDT is a predefined type and TDT is a user-defined type, then:

1) Let DT be the data type identified by TDT.

2) If the current SQL-session has a group name corresponding to the user-defined name of DT,
then let GN be that group name; otherwise, let GN be the default transform group name
associated with the current SQL-session.

3) The Syntax Rules of Subclause 9.21, “Determination of a to-sql function”, in ISO/IEC 9075-
2, are applied with DT as TYPE and GN as GROUP.

Case:

A) If there is an applicable to-sql function, then let TSF be that to-sql function. If TSF is
an SQL-invoked method, then let TSFPT be the declared type of the second SQL
parameter of TSF; otherwise, let TSFPT be the declared type of the first SQL parameter
of TSF.

Case:

I) If TSFPT is compatible with SDT, then

Case:

1) If TSF is an SQL-invoked method, then TSF is effectively invoked with the
value returned by the function invocation:

DT()

as the first parameter and SV as the second parameter. The result of evaluating
the expression TSF(DT(), SV) is the value of the i-th immediate parameter.

2) Otherwise, TSF is effectively invoked with SV as the first parameter. The
result of evaluating the expression TSF(SV) is the value of the i-th immediate
parameter.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

46 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

q) If DEFERRED is true for at least one of the first AD item descriptor areas of APD, then:

i) Let PN be the parameter number associated with the first such item descriptor area.

ii) PN becomes the deferred parameter number associated with AS.

iii) If T is 'EXECUTE', then S becomes the statement source associated with AS.

iv) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.

Call-Level Interface specifications 47

CD 9075-3:200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

5.7 Implicit CALL USING clause

Function

Specify the rules for an implicit CALL USING clause.

General Rules

1) Let S and AS be a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclause.

2) Let IPD and APD be the current implementation parameter descriptor and current application row
descriptor, respectively, for AS.

3) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specification>
values, respectively, for the <call statement> being executed. Let D be the number of <dynamic parameter
specification>s in S.

a) Let AD be the value of the COUNT field of APD. If AD is less than zero, then an exception condition
is raised: dynamic SQL error — invalid descriptor count.

b) For each item descriptor area in the APD whose LEVEL is 0 (zero) in the first AD item descriptor areas
of APD, and for all of their subordinate descriptor areas, refer to a <dynamic parameter specification>
value whose corresponding item descriptor areas have a non-zero DATA_POINTER value and whose
corresponding <dynamic parameter specification> has a <parameter mode> of PARAM MODE OUT
or PARAM MODE INOUT as a bound target and refer to the corresponding <dynamic parameter
specification> as a bound parameter.

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor areas of APD
is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an exception
condition is raised: dynamic SQL error — using clause does not match target specifications.

d) Let SDT be the effective data type of the i-th bound parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IPD for which the LEVEL is 0 (zero) and all of its subordinate
descriptor areas. Let SV be the value of the output parameter, with data type SDT.

e) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound parameter
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item descriptor
area of IPD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of APD corresponding to the i-th bound target (or part thereof, if the item descriptor
area is a subordinate descriptor).

g) Case:

i) If TYPE indicates CHARACTER, then:

48 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

Let UT be the code value corresponding to CHARACTER VARYING as specified in Table 7,
“Codes used for implementation data types in SQL/CLI”.

1)

2) Let LV be the implementation-defined maximum length for a CHARACTER VARYING
data type.

ii) Otherwise, let UT be TYPE and let LV be 0 (zero).

h) Let TDT be the effective data type of the i-th bound target as represented by the type UT, the length
value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_ CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item descriptor area of APD for
which the LEVEL is 0 (zero) and all its subordinate descriptor areas.

i) Case:

i) If TDT is a locator type, then

Case:

1) If SV is not the null value, then a locator L that uniquely identifies SV is generated and the
value TV of the i-th bound target is set to an implementation-dependent four-octet value that
represents L.

2) Otherwise, the value TV of the i-th bound target is the null value.

ii) If SDT and TDT are predefined types, then

Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC
9075-2, and there is an implementation-defined conversion from type SDT to type TDT,
then that implementation-defined conversion is effectively performed, converting SV to type
TDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

iii) If SDT is a user-defined type and TDT is a predefined data type, then:

Call-Level Interface specifications 49

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

1) Let DT be the data type identified by SDT.

2) If the current SQL-session has a group name corresponding to the user-defined name of DT,
then let GN be that group name; otherwise, let GN be the default transform group name
associated with the current SQL-session.

3) The Syntax Rules of Subclause 9.19, “Determination of a from-sql function”, in ISO/IEC
9075-2, are applied with DT as TYPE and GN as GROUP.

Case:

A) If there is an applicable from-sql function, then let FSF be that from-sql function and
let FSFRT be the <returns data type> of FSF.

Case:

I) If FSFRT is compatible with TDT, then the from-sql function TSF is effectively
invoked with SV as its input parameter and the result of evaluating TSF(SV) is
the value TV of the i-th bound target.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

j) Let IDA be the top-level item descriptor area corresponding to the i-th output parameter.

k) Case:

i) If TYPE indicates ROW, then

Case:

1) If TV is the null value, then

Case:

A) If IP is a null pointer for IDA or for any of the subordinate descriptor areas of IDA that
are not subordinate to an item descriptor area whose type indicates ARRAY, ARRAY
LOCATOR, MULTISET, or MULTISET LOCATOR, then an exception condition is
raised: data exception — null value, no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP for IDA, and those in all sub-
ordinate descriptor areas of IDA that are not subordinate to an item descriptor area whose
TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR
are set to the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous
codes used in CLI”, and the values of variables addressed by DP and LP are implemen-
tation-dependent.

2) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the i-th
field of TV by applying General Rule 3)k) to the i-th subordinate descriptor area of IDA as
IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as SV, and the data
type of the i-th field of SV as SDT.

ii) Otherwise,

Case:

50 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

1) If TV is the null value, then

Case:

A) If IP is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP is set to the appropriate 'Code'
for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, and the values
of the host variables addressed by DP and LP are implementation-dependent.

2) Otherwise:

A) If IP is not a null pointer, then the value of the host variable addressed by IP is set to 0
(zero).

B) Case:

I) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV is a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-length
character string.

2) The General Rules of Subclause 5.9, “Character string retrieval”, are applied
with DP, TV, OL, and LP as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

II) If TYPE indicates BINARY LARGE OBJECT, then the General Rules of
Subclause 5.10, “Binary string retrieval”, are applied with DP, TV, OL, and LP
as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

III) If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET
LOCATOR and if RETURNED_CARDINALITY_POINTER is not 0 (zero),
then the value of the host variable addressed by RETURNED_CARDINAL-
ITY_POINTER is set to the cardinality of TV.

IV) Otherwise, the value of the host variable addressed by DP is set to TV.

Call-Level Interface specifications 51

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

5.8 Implicit FETCH USING clause

Function

Specify the rules for an implicit FETCH USING clause.

General Rules

1) Let S, RS, RP, and AS be a SOURCE, ROWS, ROWS PROCESSED, and an ALLOCATED STATEMENT
specified in the rules of this Subclause.

2) Let IRD and ARD be the current implementation row descriptor and current application row descriptor,
respectively, associated with AS.

3) IRD and ARD describe the <select list> columns and <target specification>s, respectively, for the column
values that are to be retrieved. Let D be the degree of the table defined by S.

a) Let AD be the value of the COUNT field of ARD. If AD is less than zero, then an exception condition
is raised: dynamic SQL error — invalid descriptor count.

b) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor areas
of ARD, and for all of their subordinate descriptor areas, refer to a <target specification> whose corre-
sponding item descriptor areas have a non-zero DATA_POINTER as a bound target and refer to the
corresponding <select list> column as a bound column.

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor areas of ARD
is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an exception
condition is raised: dynamic SQL error — using clause does not match target specifications.

d) Let SDT be the effective data type of the i-th bound column as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IRD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

e) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound column
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item descriptor
area of IRD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of ARD corresponding to the i-th bound target (or part thereof, if the item descriptor
area is a subordinate descriptor).

g) Let ASP be the value of the ARRAY_STATUS_POINTER field in IRD.

h) For RN ranging from 1 (one) through RS, if the RN-th row of the rowset has been fetched, then:

i) Let SV be the value of the <select list> column, with data type SDT.

52 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

ii) Let DPE, IPE, and LPE be the addresses of the RN-th element of the arrays addressed by DP,
IP, and LP, respectively.

iii) Case:

1) If TYPE indicates CHARACTER, then:

A) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, “Codes used for implementation data types in SQL/CLI”.

B) Let LV be the implementation-defined maximum length for a CHARACTER VARYING
data type.

2) Otherwise, let UT be TYPE and let LV be 0 (zero).

iv) Let TDT be the effective data type of the i-th bound target as represented by the type UT, the
length value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the item descriptor area of ARD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

v) Let LTDT be the data type on the last fetch of the i-th bound target, if any. If any of the following
is true, then is implementation-defined whether or not an exception condition is raised: dynamic
SQL error — restricted data type attribute violation.

1) LTDT and TDT both identify a binary large object type and only one of LTDT and TDT is
a binary large object locator.

2) LTDT and TDT both identify a character large object type and only one of LTDT and TDT
is a character large object locator.

3) LTDT and TDT both identify an array type and only one of LTDT and TDT is an array
locator.

4) LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a multiset
locator.

5) LTDT and TDT both identify a user-defined type and only one of LTDT and TDT is a user-
defined type locator.

vi) Case:

1) If TDT is a locator type, then;

A) If SV is not the null value, then a locator L that uniquely identifies SV is generated and
the value TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

B) Otherwise, the value TV of the i-th bound target is the null value.

2) If SDT and TDT are predefined types, then

Case:

A) If the <cast specification>

Call-Level Interface specifications 53

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the i-th bound target.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”,
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is set to
i. If ASP is not a null pointer, then the RN-th element of the array addressed by
ASP is set to:

1) If there were completion conditions: warning raised during the application
of this Rule, then 6 (indicating Row success with information).

2) If there were exception conditions raised during the application of this Rule,
then 5 (indicating Row error).

III) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

C) The Syntax Rules of Subclause 9.19, “Determination of a from-sql function”, in ISO/IEC
9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:

54 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

1) If FSFRT is compatible with TDT, then the from-sql function TSF is effec-
tively invoked with SV as its input parameter and the the result of evaluating
TSF(SV) is the value TV of the i-th bound target.

2) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

vii) Let IDA be the top-level item descriptor area corresponding to the i-th bound column.

viii) Case:

1) If TYPE indicates ROW, then

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer for IDA or for any of the subordinate descriptor areas of
IDA that are not subordinate to an item descriptor area whose type indicates
ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, then
an exception condition is raised: data exception — null value, no indicator
parameter.

II) Otherwise, the value of the host variable addressed by IPE for IDA, and that in
all subordinate descriptor areas of IDA that are not subordinate to an item
descriptor area whose TYPE indicates ARRAY, ARRAY LOCATOR, MULTI-
SET, or MULTISET LOCATOR, is set to the appropriate 'Code' for SQL NULL
DATA in Table 27, “Miscellaneous codes used in CLI”, and the values of vari-
ables addressed by DPE and LPE are implementation-dependent.

B) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the
i-th field of TV by applying General Rule 3)h)viii) to the i-th subordinate descriptor area
of IDA as IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as
SV, and the data type of the i-th field of SV as SDT.

2) Otherwise,

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

II) Otherwise, the value of the host variable addressed by IPE is set to the appropriate
'Code' for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”,
and the values of the host variables addressed by DPE and LPE are implementa-
tion-dependent.

B) Otherwise:

Call-Level Interface specifications 55

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

I) If IPE is not a null pointer, then the value of the host variable addressed by IPE
is set to 0 (zero).

II) Case:

1) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

a) If TV is a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-
length character string.

b) The General Rules of Subclause 5.9, “Character string retrieval”, are
applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

2) For every status record that results from the application of the preceding
Rule, the ROW_NUMBER field is set to RN and the COLUMN_NUMBER
field is set to i. If ASP is not a null pointer, then the RN-th element of the
array addressed by ASP is set to:

a) If there were completion conditions: warning raised during the application
of the preceding Rule, then 6 (indicating Row success with information).

b) If there were exception conditions raised during the application of the
preceding Rule, then 5 (indicating Row error).

3) If TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE
OBJECT, then the General Rules of Subclause 5.10, “Binary string retrieval”,
are applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is
set to i. If ASP is not a null pointer, then the RN-th element of the array
addressed by ASP is set to:

a) If there were completion conditions: warning raised during the application
of this Rule, then 6 (indicating Row success with information).

b) If there were exception conditions raised during the application of this
Rule, then 5 (indicating Row error).

4) If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTI-
SET LOCATOR, and if RETURNED_CARDINALITY_POINTER is not a
null pointer, then the value of the host variable addressed by
RETURNED_CARDINALITY_POINTER is set to the cardinality of TV.

5) Otherwise, the value of the host variable addressed by DPE is set to TV and
the value of the host variable addressed by LPE is implementation-dependent.

3) If there were no exception conditions raised during the application of this Rule, then:

A) Increment RP by 1 (one).

B) If ASP is not a null pointer, then set the RN-th element of the array pointed to by ASP
to 0 (zero, indicating Row success).

56 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

5.9 Character string retrieval

Function

Specify the rules for retrieving character string values.

General Rules

1) Let T, V, TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH
specified in an application of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then the value of the host variable addressed by RL is set to L.

5) Case:

a) If null termination is False for the current SQL-environment, then

Case:

i) If L is not greater than TL, then the first L octets of T are set to V and the values of the remaining
octets of T are implementation-dependent.

ii) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning —
string data, right truncation.

b) Otherwise, let NB be the length in octets of a null terminator in the character set of T.

Case:

i) If L is not greater than (TL–NB), then the first (L+NB) octets of T are set to V concatenated with
a single implementation-defined null character that terminates a C character string. The values
of the remaining characters of T are implementation-dependent.

ii) Otherwise, T is set to the first (TL–NB) octets of V concatenated with a single implementation-
defined null character that terminates a C character string and a completion condition is raised:
warning — string data, right truncation.

Call-Level Interface specifications 57

CD 9075-3:200x(E)
5.9 Character string retrieval

5.10 Binary string retrieval

Function

Specify the rules for retrieving binary string values.

General Rules

1) Let T, V, TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH
specified in an application of this Subclause.

2) If TL is not greater than zero (0), then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then RL is set to L.

5) Case:

a) If L is not greater than TL, then the first L octets of T are set to V and the values of the remaining octets
of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning — string
data, right truncation.

58 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.10 Binary string retrieval

5.11 Deferred parameter check

Function

Check for the existence of deferred dynamic parameters when accessing a CLI descriptor.

General Rules

1) Let DA be a DESCRIPTOR AREA specified in an application of this Subclause.

2) Let C be the allocated SQL-connection with which DA is associated.

3) Let L1 be the set of all allocated SQL-statements associated with C.

4) Let L2 be the set of all allocated SQL-statements in L1 which have an associated deferred parameter number.

5) Let L3 be the set of all CLI descriptor areas that are either the current application parameter descriptor for,
or the implementation parameter descriptor associated with, an allocated SQL-statement in L2.

6) If DA is contained in L3, then an exception condition is raised: CLI-specific condition — function sequence
error.

Call-Level Interface specifications 59

CD 9075-3:200x(E)
5.11 Deferred parameter check

5.12 CLI-specific status codes

Some of the conditions that can occur during the execution of CLI routines are CLI-specific. The corresponding
status codes are listed in Table 5, “SQLSTATE class and subclass values for SQL/CLI-specific conditions”.

Table 5 — SQLSTATE class and subclass values for SQL/CLI-specific conditions

SubclassSubconditionClassConditionCategory

000(no subclass)HYCLI-specific conditionX

007associated statement is not pre-
pared

020attempt to concatenate a null value

011attribute cannot be set now

097column type out of range

(See the
Note at the
end of the
table)

dynamic parameter value needed

010function sequence error

021inconsistent descriptor information

092invalid attribute identifier

024invalid attribute value

109invalid cursor position

004invalid data type

003invalid data type in application
descriptor

091invalid descriptor field identifier

106invalid fetch orientation

095invalid FunctionId specified

(See the
Note at the
end of the
table)

invalid handle

60 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.12 CLI-specific status codes

SubclassSubconditionClassConditionCategory

096invalid information type

104invalid LengthPrecision value

105invalid parameter mode

103invalid retrieval code

090invalid string length or buffer
length

012invalid transaction operation code

017invalid use of automatically-allo-
cated descriptor handle

009invalid use of null pointer

014limit on number of handles
exceeded

001memory allocation error

013memory management error

019non-string data cannot be sent in
pieces

055non-string data cannot be used
with string routine

099nullable type out of range

008operation canceled

C00optional feature not implemented

107row value out of range

098scope out of range

018server declined the cancellation
request

NOTE 11 — No subclass value is defined for the subcondition invalid handle since no diagnostic information can be generated in this
case, nor for the subcondition dynamic parameter value needed, since no diagnostic information is generated in this case.

Call-Level Interface specifications 61

CD 9075-3:200x(E)
5.12 CLI-specific status codes

5.13 Description of CLI item descriptor areas

This Subclause is modified by Subclause 19.3, “Description of CLI item descriptor areas”, in ISO/IEC 9075-9.

Function

Specify the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1) A CLI item descriptor area comprises the fields specified in Table 6, “Fields in SQL/CLI row and parameter
descriptor areas”.

2) Given a CLI item descriptor area IDA in which the value of LEVEL is some value N, the immediately
subordinate descriptor areas of IDA are those CLI item descriptor areas in which the value of LEVEL is
N+1 and whose position in the CLI descriptor area follows that of IDA and precedes that of any CLI item
descriptor area in which the value of LEVEL is less than N+1. The subordinate descriptor areas of IDA are
those CLI item descriptor areas that are immediately subordinate descriptor areas of IDA or that are subor-
dinate descriptor areas of an CLI item descriptor area that is immediately subordinate to IDA.

3) Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are defined to
be

Case:

a) If DT is ROW, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) If DT is ARRAY or MULTISET, then the descriptor of the associated element type of DT. The subor-
dinate descriptors of DE are those descriptors that are immediately subordinate descriptors of DE or
that are subordinate descriptors of a descriptor that is immediately subordinate to DE.

4) Given a descriptor DE, let SDEj represent its j-th immediately subordinate descriptor. There is an implied
ordering of the subordinate descriptors of DE, such that:

a) SDE1 is in the first ordinal position.

b) The ordinal position of SDEj+1 is K+NS+1, where K is the ordinal position of SDEj and NS is the
number of subordinate descriptors of SDEj. The implicitly ordered subordinate descriptors of SDEj
occupy contiguous ordinal positions starting at position K+1.

5) Let IDA be an item descriptor area in an implementation parameter descriptor. IDA is valid if and only if
all of the following are true:

a) TYPE is one of the code values in Table 7, “Codes used for implementation data types in SQL/CLI”.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT of the implementation
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

c) Exactly one of the following is true:

62 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Case:

i) TYPE indicates CHARACTER or CHARACTER VARYING, or CHARACTER LARGE
OBJECT and LENGTH is a valid length value for a <character string type>.

ii) TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT and LENGTH
is a valid length value for a <binary string type>.

iii) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

iv) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

v) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

vii) TYPE indicates BOOLEAN.

viii) TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is one of the code values
in Table 9, “Codes associated with datetime data types in SQL/CLI”, and PRECISION is a valid
precision value for the <time precision> or <timestamp precision> of the indicated datetime
data type.

ix) TYPE indicates an <interval type>, DATETIME_INTERVAL_CODE is one of the code values
in Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, to indicate the <interval
qualifier> of the interval data type, DATETIME_INTERVAL_PRECISION is a valid <interval
leading field precision>, and PRECISION is a valid precision value for <interval fractional
seconds precision>, if applicable.

x) TYPE indicates USER-DEFINED TYPE.

xi) TYPE indicates REF.

xii) TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row type,
there are exactly N immediately subordinate descriptor areas of IDA, and those item descriptor
areas are valid.

xiii) TYPE indicates ARRAY or ARRAY LOCATOR, the value of CARDINALITY is a valid value
for the maximum cardinality of an array, there is exactly one immediately subordinate descriptor
area of IDA, and that item descriptor area is valid.

xiv) TYPE indicates an implementation-defined data type.

6) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

7) A CLI item descriptor area in a CLI descriptor area that is not an implementation row descriptor is consistent
if and only if all of the following are true:

a) TYPE indicates DEFAULT or is one of the code values in Table 8, “Codes used for application data
types in SQL/CLI”.

b) All of the following are true:

Call-Level Interface specifications 63

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”.i)

ii) TYPE is neither ROW, ARRAY, nor MULTISET.

iii) The row that contains the SQL data type corresponding to TYPE in the SQL data type column
of the operative data type correspondence table does not contain “None” in the host data type
column.

c) Exactly one of the following is true:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

iv) TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, CHARACTER
LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT,
BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE
PRECISION, USER-DEFINED TYPE LOCATOR, or REF.

v) TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

vi) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

vii) TYPE indicates an implementation-defined data type.

8) Let IDA be a CLI item descriptor area in an application parameter descriptor. Let IDA1 be the corresponding
item descriptor area in the implementation parameter descriptor.

9) If the OCTET_LENGTH_POINTER field of IDA has the same non-zero value as the INDICA-
TOR_POINTER field of IDA, then SHARE is true for IDA; otherwise, SHARE is false for IDA.

10) Case:

a) If SHARE is true and the value of the commonly addressed host variable is the appropriate 'Code' for
SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for IDA.

b) If SHARE is false, INDICATOR_POINTER is not zero, and the value of the host variable addressed
by INDICATOR_POINTER is the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous
codes used in CLI”, then NULL is true for IDA.

c) Otherwise, NULL is false for IDA.

11) If NULL is false, OCTET_LENGTH_POINTER is not zero, and the value of the host variable addressed
by OCTET_LENGTH_POINTER the appropriate 'Code' for DATA AT EXEC in Table 27, “Miscellaneous
codes used in CLI”, then DEFERRED is true for IDA; otherwise, DEFERRED is false for IDA.

12) IDA is valid if and only if:

a) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, and
at least one of the following is true:

64 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

TYPE is ROW, ARRAY, or MULTISET.i)

ii) The row of the operative data type correspondences table that contains the SQL data type corre-
sponding to the value of TYPE in the SQL data type column does not contain 'None' in the host
data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

c) One of the following is true:

Case:

i) TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value V of the host variable addressed by
OCTET_LENGTH_POINTER is greater than zero, and the number of characters wholly
contained in the first V octets of the host variable addressed by DATA_POINTER is a valid
length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

4) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, and the number of charac-
ters of the value of the host variable addressed by DATA_POINTER that precede the
implementation-defined null character that terminates a C character string is a valid length
value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

5) OCTET_LENGTH_POINTER is zero, PARAMETER_MODE in IDA1 is PARAM MODE
IN or PARAM MODE INOUT, and the number of characters of the value of the host variable
addressed by DATA_POINTER that precede the implementation-defined null character that
terminates a C character string is a valid length value for a CHARACTER, CHARACTER
LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT data
type, as indicated by TYPE.

6) PARAMETER_MODE in IDA1 is PARAM MODE OUT.

ii) TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, or USER-DEFINED TYPE LOCATOR and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

iii) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

iv) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

Call-Level Interface specifications 65

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

v) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

vii) TYPE indicates REF and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

viii) TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

ix) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

x) TYPE indicates an implementation-defined data type.

d) One of the following is true:

i) DATA_POINTER is zero and NULL is true.

ii) DATA_POINTER is zero and DEFERRED is true.

iii) DATA_POINTER is not zero and exactly one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) PARAMETER_MODE in IDA1 is PARAM MODE IN or PARAM MODE INOUT and the
value of the host variable addressed by DATA_POINTER is a valid value of the data type
indicated by TYPE.

4) PARAMETER_MODE in IDA1 is PARAM MODE OUT.

13) A CLI item descriptor area in an application row descriptor is valid if and only if:

a) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, and
at least one of the following is true:

i) TYPE is ROW, ARRAY, or MULTISET.

ii) The row of the operative data type correspondences table that contains the SQL data type corre-
sponding to the value of TYPE in the SQL data type column does not contain 'None' in the host
data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

c) One of the following is true:

Case:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

66 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

ii) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

iv) TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, CHARACTER LARGE
OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT, BINARY
LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECI-
SION, USER-DEFINED TYPE LOCATOR, or REF.

v) TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

vi) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

vii) TYPE indicates an implementation-defined data type.

Table 6 — Fields in SQL/CLI row and parameter descriptor areas

Data TypeField

SMALLINTALLOC_TYPE

INTEGERARRAY_SIZE

host variable address of INTEGERARRAY_STATUS_POINTER

SMALLINTCOUNT

CHARACTER VARYING(L)†DYNAMIC_FUNCTION

INTEGERDYNAMIC_FUNCTION_CODE

SMALLINTKEY_TYPE

host variable address of INTEGERROWS_PROCESSED_POINTER

SMALLINTTOP_LEVEL_COUNT

Implementation-defined data typeImplementation-defined header field

INTEGERCARDINALITY

CHARACTER VARYING(L)†CHARACTER_SET_CATALOG

CHARACTER VARYING(L)†CHARACTER_SET_NAME

CHARACTER VARYING(L)†CHARACTER_SET_SCHEMA

Call-Level Interface specifications 67

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Data TypeField

CHARACTER VARYING(L)†COLLATION_CATALOG

CHARACTER VARYING(L)†COLLATION_NAME

CHARACTER VARYING(L)†COLLATION_SCHEMA

CHARACTER VARYING(L1)†CURRENT_TRANSFORM_GROUP

host variable addressDATA_POINTER

SMALLINTDATETIME_INTERVAL_CODE

SMALLINTDATETIME_INTERVAL_PRECISION

INTEGERDEGREE

host variable address of INTEGERINDICATOR_POINTER

SMALLINTKEY_MEMBER

INTEGERLENGTH

INTEGERLEVEL

CHARACTER VARYING(L)†NAME

SMALLINTNULLABLE

INTEGEROCTET_LENGTH

host variable address of INTEGEROCTET_LENGTH_POINTER

SMALLINTPARAMETER_MODE

SMALLINTPARAMETER_ORDINAL_POSITION

CHARACTER VARYING(L)†PARAMETER_SPECIFIC_CATALOG

CHARACTER VARYING(L)†PARAMETER_SPECIFIC_NAME

CHARACTER VARYING(L)†PARAMETER_SPECIFIC_SCHEMA

SMALLINTPRECISION

host variable address of INTEGERRETURNED_CARDINALITY_POINTER

SMALLINTSCALE

68 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Data TypeField

CHARACTER VARYING(L)†SCOPE_CATALOG

CHARACTER VARYING(L)†SCOPE_NAME

CHARACTER VARYING(L)†SCOPE_SCHEMA

CHARACTER VARYING(L)†SPECIFIC_TYPE_CATALOG

CHARACTER VARYING(L)†SPECIFIC_TYPE_NAME

CHARACTER VARYING(L)†SPECIFIC_TYPE_SCHEMA

SMALLINTTYPE

SMALLINTUNNAMED

CHARACTER VARYING(L)†USER_DEFINED_TYPE_CATALOG

CHARACTER VARYING(L)†USER_DEFINED_TYPE_NAME

CHARACTER VARYING(L)†USER_DEFINED_TYPE_SCHEMA

SMALLINTUSER_DEFINED_TYPE_CODE

Implementation-defined data typeImplementation-defined item field

† Where L is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum length for
the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

General Rules

1) Table 7, “Codes used for implementation data types in SQL/CLI”, specifies the codes associated with the
SQL data types used in implementation descriptor areas.

Table 7 — Codes used for implementation data types in SQL/CLI

CodeData Type

50ARRAY

25BIGINT

60BINARY

30BINARY LARGE OBJECT

Call-Level Interface specifications 69

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

CodeData Type

61BINARY VARYING

16BOOLEAN

1 (one)CHARACTER

40CHARACTER LARGE OBJECT

12CHARACTER VARYING

9DATE, TIME, TIME WITH TIME ZONE, TIMES-
TAMP, or TIMESTAMP WITH TIME ZONE

3DECIMAL

8DOUBLE PRECISION

6FLOAT

4INTEGER

10INTERVAL

55MULTISET

2NUMERIC

7REAL

20REF

19ROW

5SMALLINT

17USER-DEFINED TYPE

< 0 (zero)Implementation-defined data type

2) Table 8, “Codes used for application data types in SQL/CLI”, specifies the codes associated with the SQL
data types used in application descriptor areas.

Table 8 — Codes used for application data types in SQL/CLI

CodeData Type

< 0 (zero)Implementation-defined data type

70 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

CodeData Type

51ARRAY LOCATOR

25BIGINT

60BINARY

30BINARY LARGE OBJECT

31BINARY LARGE OBJECT LOCATOR

61BINARY VARYING

1 (one)CHARACTER

40CHARACTER LARGE OBJECT

41CHARACTER LARGE OBJECT LOCATOR

3DECIMAL

8DOUBLE PRECISION

6FLOAT

4INTEGER

56MULTISET LOCATOR

2NUMERIC

7REAL

20REF

5SMALLINT

18USER-DEFINED TYPE LOCATOR

3) Table 9, “Codes associated with datetime data types in SQL/CLI”, specifies the codes associated with the
datetime data types allowed in SQL/CLI.

Table 9 — Codes associated with datetime data types in SQL/CLI

CodeDatetime Data Type

1 (one)DATE

2TIME

Call-Level Interface specifications 71

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

CodeDatetime Data Type

4TIME WITH TIME ZONE

3TIMESTAMP

5TIMESTAMP WITH TIME ZONE

4) Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, specifies the codes associated with
<interval qualifier>s for interval data types in SQL/CLI.

Table 10 — Codes associated with <interval qualifier> in SQL/CLI

CodeInterval qualifier

3DAY

8DAY TO HOUR

9DAY TO MINUTE

10DAY TO SECOND

4HOUR

11HOUR TO MINUTE

12HOUR TO SECOND

5MINUTE

13MINUTE TO SECOND

2MONTH

6SECOND

1 (one)YEAR

7YEAR TO MONTH

5) Table 11, “Codes associated with <parameter mode> in SQL/CLI”, specifies the codes associated with the
SQL parameter modes.

72 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Table 11 — Codes associated with <parameter mode> in SQL/CLI

CodeParameter mode

1 (one)PARAM MODE IN

2PARAM MODE INOUT

4PARAM MODE OUT

Table 12 — Codes associated with user-defined types in SQL/CLI

CodeUser-defined Type

1 (one)DISTINCT

2STRUCTURED

Call-Level Interface specifications 73

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

5.14 Other tables associated with CLI

This Subclause is modified by Subclause 19.4, “Other tables associated with CLI”, in ISO/IEC 9075-9.

The tables contained in this Subclause are used to specify the codes used by the various CLI routines.

Table 13 — Codes used for SQL/CLI diagnostic fields

TypeCodeField

Status18CATALOG_NAME

Status8CLASS_ORIGIN

Status21COLUMN_NAME

Status-1247COLUMN_NUMBER

Status25CONDITION_IDENTIFIER

Status14CONDITION_NUMBER

Status10CONNECTION_NAME

Status15CONSTRAINT_CATALOG

Status17CONSTRAINT_NAME

Status16CONSTRAINT_SCHEMA

Status22CURSOR_NAME

Header7DYNAMIC_FUNCTION

Header12DYNAMIC_FUNCTION_CODE

Status23MESSAGE_LENGTH

Status24MESSAGE_OCTET_LENGTH

Status6MESSAGE_TEXT

Header13MORE

Status5NATIVE_CODE

Header2NUMBER

Status37PARAMETER_MODE

Status26PARAMETER_NAME

74 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

TypeCodeField

Status38PARAMETER_ORDINAL_POSITION

Header1 (one)RETURNCODE

Status27ROUTINE_CATALOG

Status29ROUTINE_NAME

Status28ROUTINE_SCHEMA

Header3ROW_COUNT

Status-1248ROW_NUMBER

Status19SCHEMA_NAME

Status11SERVER_NAME

Status30SPECIFIC_NAME

Status4SQLSTATE

Status9SUBCLASS_ORIGIN

Status20TABLE_NAME

Header36TRANSACTION_ACTIVE

Header34TRANSACTIONS_COMMITTED

Header35TRANSACTIONS_ROLLED_BACK

Status31TRIGGER_CATALOG

Status33TRIGGER_NAME

Status32TRIGGER_SCHEMA

Header< 0 (zero)1Implementation-defined diagnostics
header field

Status< 0 (zero)1Implementation-defined diagnostics
status field

1 Except for values in this table that are less than 0 (zero).

Call-Level Interface specifications 75

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 14 — Codes used for SQL/CLI handle types

CodeHandle type

2CONNECTION HANDLE

4DESCRIPTOR HANDLE

1 (one)ENVIRONMENT HANDLE

3STATEMENT HANDLE

< 1 (one) or > 100Implementation-defined handle type

Table 15 — Codes used for transaction termination

CodeTermination type

0 (zero)COMMIT

1 (one)ROLLBACK

2SAVEPOINT NAME ROLLBACK

4SAVEPOINT NAME RELEASE

6COMMIT AND CHAIN

7ROLLBACK AND CHAIN

< 0 (zero)Implementation-defined termination
type

Table 16 — Codes used for environment attributes

May be setCodeAttribute

Yes10001NULL TERMINATION

Implementation-defined≥ 0 (zero),
except values
given above

Implementation-defined environment
attribute

76 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 17 — Codes used for connection attributes

May be setCodeAttribute

No10001POPULATE IPD

Yes10027SAVEPOINT NAME

Implementation-defined≥ 0 (zero),
except values
given above

Implementation-defined connection
attribute

Table 18 — Codes used for statement attributes

May be setCodeAttribute

Yes10011APD HANDLE

Yes10010ARD HANDLE

No10013IPD HANDLE

No10012IRD HANDLE

Yes10027CURRENT OF POSITION

Yes-3CURSOR HOLDABLE

Yes-1CURSOR SCROLLABLE

Yes-2CURSOR SENSITIVITY

Yes10014METADATA ID

Yes10029NEST DESCRIPTOR

Implementation-defined≥ 0 (zero),
except values
given above

Implementation-defined statement
attribute

Table 19 — Codes used for FreeStmt options

CodeOption

0 (zero)CLOSE CURSOR

Call-Level Interface specifications 77

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

CodeOption

1 (one)FREE HANDLE

2UNBIND COLUMNS

3UNBIND PARAMETERS

4REALLOCATE

Table 20 — Data types of attributes

ValuesData typeAttribute

0 (False) 1 (True)INTEGERNULL TERMINATION

0 (False) 1 (True)INTEGERPOPULATE IPD

Handle valueINTEGERAPD HANDLE

Handle valueINTEGERARD HANDLE

Handle valueINTEGERIPD HANDLE

Handle valueINTEGERIRD HANDLE

Integer value denoting the current row in the rowsetINTEGERCURRENT OF POSITION

0 (NONHOLDABLE) 1 (HOLDABLE)INTEGERCURSOR HOLDABLE

0 (NONSCROLLABLE) 1 (SCROLLABLE)INTEGERCURSOR SCROLLABLE

0 (ASENSITIVE) 1 (INSENSITIVE) 2 (SENSI-
TIVE)

INTEGERCURSOR SENSITIVITY

0 (FALSE) 1 (TRUE)INTEGERMETADATA ID

0 (FALSE) 1 (TRUE)INTEGERNEST DESCRIPTOR

Not specifiedCHARACTERSAVEPOINT NAME

Table 21 — Codes used for SQL/CLI descriptor fields

TypeSQL Item Descriptor NameCodeField

Header(Not applicable)1099ALLOC_TYPE

Header(Not applicable)20ARRAY_SIZE

78 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

TypeSQL Item Descriptor NameCodeField

Header(Not applicable)21ARRAY_STATUS_POINTER

ItemCARDINALITY1040CARDINALITY

ItemCHARACTER_SET_CATALOG1018CHARACTER_SET_CATALOG

ItemCHARACTER_SET_NAME1020CHARACTER_SET_NAME

ItemCHARACTER_SET_SCHEMA1019CHARACTER_SET_SCHEMA

ItemCOLLATION_CATALOG1015COLLATION_CATALOG

ItemCOLLATION_NAME1017COLLATION_NAME

ItemCOLLATION_SCHEMA1016COLLATION_SCHEMA

HeaderCOUNT1001COUNT

Item(Not applicable)1039CURRENT_TRANSFORM_GROUP

ItemDATA1010DATA_POINTER

ItemDATETIME_INTERVAL_CODE1007DATETIME_INTERVAL_CODE

ItemDATETIME_INTERVAL_PRECISION26DATETIME_INTERVAL_PRECI-
SION

ItemDEGREE1041DEGREE

HeaderDYNAMIC_FUNCTION1031DYNAMIC_FUNCTION

HeaderDYNAMIC_FUNCTION_CODE1032DYNAMIC_FUNCTION_CODE

ItemINDICATOR1009INDICATOR_POINTER

ItemKEY_MEMBER1030KEY_MEMBER

HeaderKEY_TYPE1029KEY_TYPE

ItemLENGTH1003LENGTH

ItemLEVEL1042LEVEL

ItemNAME1011NAME

ItemNULLABLE1008NULLABLE

ItemOCTET_LENGTH1013OCTET_LENGTH

Call-Level Interface specifications 79

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

TypeSQL Item Descriptor NameCodeField

ItemBoth OCTET_LENGTH (input) and
RETURNED_OCTET_LENGTH (out-
put)

1004OCTET_LENGTH_POINTER

ItemPARAMETER_MODE1021PARAMETER_MODE

ItemPARAMETER_ORDINAL_POSITION1022PARAMETER_ORDINAL_POSITION

ItemPARAMETER_SPECIFIC_CATALOG1023PARAMETER_SPECIFIC_CATALOG

ItemPARAMETER_SPECIFIC_NAME1025PARAMETER_SPECIFIC_NAME

ItemPARAMETER_SPECIFIC_SCHEMA1024PARAMETER_SPECIFIC_SCHEMA

ItemPRECISION1005PRECISION

ItemRETURNED_CARDINALITY1043RETURNED_CARDINAL-
ITY_POINTER

Header(Not applicable)34ROW_PROCESSED_POINTER

ItemSCALE1006SCALE

ItemSCOPE_CATALOG1033SCOPE_CATALOG

ItemSCOPE_NAME1034SCOPE_NAME

ItemSCOPE_SCHEMA1035SCOPE_SCHEMA

Item(Not applicable)1036SPECIFIC_TYPE_CATALOG

Item(Not applicable)1038SPECIFIC_TYPE_NAME

Item(Not applicable)1037SPECIFIC_TYPE_SCHEMA

HeaderTOP_LEVEL_COUNT1044TOP_LEVEL_COUNT

ItemTYPE1002TYPE

ItemUNNAMED1012UNNAMED

ItemUSER_DEFINED_TYPE_CATALOG1026USER_DEFINED_TYPE_CATALOG

ItemUSER_DEFINED_TYPE_NAME1028USER_DEFINED_TYPE_NAME

ItemUSER_DEFINED_TYPE_SCHEMA1027USER_DEFINED_TYPE_SCHEMA

ItemUSER_DEFINED_TYPE_CODE1045USER_DEFINED_TYPE_CODE

80 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

TypeSQL Item Descriptor NameCodeField

HeaderImplementation-defined descriptor
header field

0 (zero)
through

999, or ≥
1200,
exclud-
ing val-
ues
defined
in this
table

Implementation-defined descriptor
header field

ItemImplementation-defined descriptor item
field

0 (zero)
through

999, or ≥
1200,
exclud-
ing val-
ues
defined
in this
table

Implementation-defined descriptor item
field

Table 22 — Ability to set SQL/CLI descriptor fields

May be set

IPDAPDIRDARDField

No†NoNoNoALLOC_TYPE

NoNoARRAY_SIZE

ARRAY_STATUS_POINTER

NoNoNoCARDINALITY

NoCHARACTER_SET_CATALOG

NoCHARACTER_SET_NAME

NoCHARACTER_SET_SCHEMA

NoCOLLATION_CATALOG

NoCOLLATION_NAME

NoCOLLATION_SCHEMA

Call-Level Interface specifications 81

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

May be set

IPDAPDIRDARDField

NoCOUNT

NoNoNoNoCURRENT_TRANSFORM_GROUP

NoDATA_POINTER

NoDATETIME_INTERVAL_CODE

NoDATETIME_INTERVAL_PRECISION

NoNoNoDEGREE

NoNoNoNoDYNAMIC_FUNCTION

NoNoNoNoDYNAMIC_FUNCTION_CODE

NoNoINDICATOR_POINTER

NoNoNoNoKEY_MEMBER

NoNoNoNoKEY_TYPE

NoLENGTH

NoLEVEL

NoNAME

NoNULLABLE

NoOCTET_LENGTH

NoNoOCTET_LENGTH_POINTER

NoNoNoPARAMETER_MODE

NoNoNoPARAMETER_ORDINAL_POSITION

NoNoNoPARAMETER_SPECIFIC_CATALOG

NoNoNoPARAMETER_SPECIFIC_NAME

NoNoNoPARAMETER_SPECIFIC_SCHEMA

NoPRECISION

NoNoRETURNED_CARDINALITY_POINTER

82 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

May be set

IPDAPDIRDARDField

NoNoROWS_PROCESSED_POINTER

NoSCALE

NoSCOPE_CATALOG

NoSCOPE_NAME

NoSCOPE_SCHEMA

NoNoNoNoSPECIFIC_TYPE_CATALOG

NoNoNoNoSPECIFIC_TYPE_NAME

NoNoNoNoSPECIFIC_TYPE_SCHEMA

NoTOP_LEVEL_COUNT

NoTYPE

NoUNNAMED

NoUSER_DEFINED_TYPE_CATALOG

NoUSER_DEFINED_TYPE_NAME

NoUSER_DEFINED_TYPE_SCHEMA

NoNoNoNoUSER_DEFINED_TYPE_CODE

IDIDIDIDImplementation-defined descriptor header field

IDIDIDIDImplementation-defined descriptor item field

† Where “No” means that the descriptor field is not settable, “ID” means that it is implementation-defined whether or not the
descriptor field is settable, and the absence of any notation means that the descriptor field is settable.

Table 23 — Ability to retrieve SQL/CLI descriptor fields

May be retrieved

IPDAPDIRDARDField

PSALLOC_TYPE

NoNoARRAY_SIZE

Call-Level Interface specifications 83

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

May be retrieved

IPDAPDIRDARDField

ARRAY_STATUS_POINTER

NoPSNoCARDINALITY

PSCHARACTER_SET_CATALOG

PSCHARACTER_SET_NAME

PSCHARACTER_SET_SCHEMA

PSCOLLATION_CATALOG

PSCOLLATION_NAME

PSCOLLATION_SCHEMA

PSCOUNT

PSCURRENT_TRANSFORM_GROUP

No†NoDATA_POINTER

PSDATETIME_INTERVAL_CODE

PSDATETIME_INTERVAL_PRECISION

NoPSNoDEGREE

NoNoDYNAMIC_FUNCTION

NoNoDYNAMIC_FUNCTION_CODE

NoNoINDICATOR_POINTER

NoNoPSNoKEY_MEMBER

NoNoPSNoKEY_TYPE

PSLENGTH

PSLEVEL

PSNAME

PSNULLABLE

PSOCTET_LENGTH

84 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

May be retrieved

IPDAPDIRDARDField

NoNoOCTET_LENGTH_POINTER

NoNoPSNoPARAMETER_MODE

NoNoPSNoPARAMETER_ORDINAL_POSITION

NoNoPSNoPARAMETER_SPECIFIC_CATALOG

NoNoPSNoPARAMETER_SPECIFIC_NAME

NoNoPSNoPARAMETER_SPECIFIC_SCHEMA

PSPRECISION

NoNoRETURNED_CARDINALITY_POINTER

NoNoROWS_PROCESSED_POINTER

PSSCALE

PSSCOPE_CATALOG

PSSCOPE_NAME

PSSCOPE_SCHEMA

PSSPECIFIC_TYPE_CATALOG

PSSPECIFIC_TYPE_NAME

PSSPECIFIC_TYPE_SCHEMA

PSTOP_LEVEL_COUNT

PSTYPE

PSUNNAMED

PSUSER_DEFINED_TYPE_CATALOG

PSUSER_DEFINED_TYPE_NAME

PSUSER_DEFINED_TYPE_SCHEMA

PSUSER_DEFINED_TYPE_CODE

IDIDIDIDImplementation-defined descriptor header field

Call-Level Interface specifications 85

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

May be retrieved

IPDAPDIRDARDField

IDIDIDIDImplementation-defined descriptor item field

† Where “No” means that the descriptor field is not retrievable, PS means that the descriptor field is retrievable from the IRD
only when a prepared or executed statement is associated with the IRD, the absence of any notation means that the descriptor
field is retrievable, and “ID” means that it is implementation-defined whether or not the descriptor field is retrievable.

Table 24 — SQL/CLI descriptor field default values

Default values

IPDAPDIRDARDField

AUTO-
MATIC

AUTO-
MATIC or
USER

AUTO-
MATIC

AUTO-
MATIC or
USER

ALLOC_TYPE

1 (one)1 (one)ARRAY_SIZE

NullNullNullNullARRAY_STATUS_POINTER

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

0 (zero)†0 (zero)COUNT

CURRENT_TRANSFORM_GROUP

NullNullDATA_POINTER

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECI-
SION

DEGREE

86 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Default values

IPDAPDIRDARDField

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

NullNullINDICATOR_POINTER

KEY_MEMBER

KEY_TYPE

LENGTH

0 (zero)0 (zero)LEVEL

NAME

NULLABLE

OCTET_LENGTH

NullNullOCTET_LENGTH_POINTER

PARAMETER_MODE

PARAMETER_ORDINAL_POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA

PRECISION

NullNullRETURNED_CARDINAL-
ITY_POINTER

NullNullROWS_PROCESSED_POINTER

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

Call-Level Interface specifications 87

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Default values

IPDAPDIRDARDField

SPECIFIC_TYPE_NAME

SPECIFIC_TYPE_SCHEMA

0 (zero)0 (zero)TOP_LEVEL_COUNT

DEFAULTDEFAULTTYPE

UNNAMED

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA

USER_DEFINED_TYPE_CODE

IDIDIDIDImplementation-defined descriptor
header field

IDIDIDIDImplementation-defined descriptor item
field

† Where “Null” means that the descriptor field's default value is a null pointer, the absence of any notation means that the
descriptor field's default value is initially undefined, “ID” means that the descriptor field's default value is implementation-defined,
and any other value specifies the descriptor field's default value.

Table 25 — Codes used for fetch orientation

CodeFetch Orientation

1 (one)NEXT

2FIRST

3LAST

4PRIOR

5ABSOLUTE

6RELATIVE

88 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 26 — Multi-row fetch status codes

Return codeReturn code meaning

0 (zero)Row success

6Row success with
information

5Row error

3No row

Table 27 — Miscellaneous codes used in CLI

IndicatesCodeContext

AUTOMATIC1 (one)Allocation type

USER2Allocation type

FALSE, NONSCROLLABLE, ASENSITIVE, NO NULLS,
NONHOLDABLE

0
(zero)

Attribute value

TRUE, SCROLLABLE, INSENSITIVE, NULLABLE, HOLD-
ABLE

1 (one)Attribute value

SENSITIVE2Attribute value

ALL TYPES0
(zero)

Data type

APD TYPE-99Data type

ARD TYPE-99Data type

DEFAULT99Data type

INITIALLY DEFERRED5Deferrable constraints

INITIALLY IMMEDIATE6Deferrable constraints

NOT DEFERRABLE7Deferrable constraints

NULL TERMINATED-3Input string length

SQL NULL DATA-1Input or output data

DATA AT EXEC-2Parameter length

Call-Level Interface specifications 89

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

IndicatesCodeContext

CASCADE0
(zero)

Referential Constraint

RESTRICT1 (one)Referential Constraint

SET DEFAULT4Referential Constraint

SET NULL2Referential Constraint

NO ACTION3Referential Constraint

Table 28 — Codes used to identify SQL/CLI routines

CodeGeneric Name

1 (one)AllocConnect

2AllocEnv

1001AllocHandle

3AllocStmt

4BindCol

72BindParameter

5Cancel

1003CloseCursor

6ColAttribute

56ColumnPrivileges

40Columns

7Connect

1004CopyDesc

57DataSources

8DescribeCol

9Disconnect

1005EndTran

90 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

CodeGeneric Name

10Error

11ExecDirect

12Execute

13Fetch

1021FetchScroll

60ForeignKeys

14FreeConnect

15FreeEnv

1006FreeHandle

16FreeStmt

1007GetConnectAttr

17GetCursorName

43GetData

1008GetDescField

1009GetDescRec

1010GetDiagField

1011GetDiagRec

1012GetEnvAttr

1027GetFeatureInfo

44GetFunctions

45GetInfo

1022GetLength

1025GetParamData

1023GetPosition

1028GetSessionInfo

Call-Level Interface specifications 91

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

CodeGeneric Name

1014GetStmtAttr

1024GetSubString

47GetTypeInfo

61MoreResults

73NextResult

18NumResultCols

48ParamData

19Prepare

65PrimaryKeys

49PutData

20RowCount

1016SetConnectAttr

21SetCursorName

1017SetDescField

1018SetDescRec

1019SetEnvAttr

1020SetStmtAttr

52SpecialColumns

74StartTran

70TablePrivileges

54Tables

< 0 (zero), or 400 through 1299, or ≥ 2000Implementation-
defined CLI routine

92 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 29 — Codes and data types for implementation information

Data TypeCodeInformation Type

CHARACTER(1)10003CATALOG NAME

CHARACTER(254)10004COLLATING SEQUENCE

SMALLINT23CURSOR COMMIT BEHAVIOR

CHARACTER(128)2DATA SOURCE NAME

CHARACTER(254)17DBMS NAME

CHARACTER(254)18DBMS VERSION

INTEGER26DEFAULT TRANSACTION ISOLA-
TION

SMALLINT28IDENTIFIER CASE

SMALLINT34MAXIMUM CATALOG NAME
LENGTH

SMALLINT30MAXIMUM COLUMN NAME
LENGTH

SMALLINT97MAXIMUM COLUMNS IN GROUP
BY

SMALLINT99MAXIMUM COLUMNS IN ORDER
BY

SMALLINT100MAXIMUM COLUMNS IN SELECT

SMALLINT101MAXIMUM COLUMNS IN TABLE

SMALLINT1 (one)MAXIMUM CONCURRENT
ACTIVITIES

SMALLINT31MAXIMUM CURSOR NAME
LENGTH

SMALLINT0 (zero)MAXIMUM DRIVER CONNEC-
TIONS

SMALLINT10005MAXIMUM IDENTIFIER LENGTH

SMALLINT32MAXIMUM SCHEMA NAME
LENGTH

Call-Level Interface specifications 93

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Data TypeCodeInformation Type

SMALLINT20000MAXIMUM STATEMENT OCTETS

SMALLINT20001MAXIMUM STATEMENT OCTETS
DATA

SMALLINT20002MAXIMUM STATEMENT OCTETS
SCHEMA

SMALLINT35MAXIMUM TABLE NAME LENGTH

SMALLINT106MAXIMUM TABLES IN SELECT

SMALLINT107MAXIMUM USER NAME LENGTH

SMALLINT85NULL COLLATION

CHARACTER(1)90ORDER BY COLUMNS IN SELECT

CHARACTER(1)14SEARCH PATTERN ESCAPE

CHARACTER(128)13SERVER NAME

CHARACTER(254)94SPECIAL CHARACTERS

SMALLINT46TRANSACTION CAPABLE

INTEGER72TRANSACTION ISOLATION
OPTION

Implementation-defined data typeImplementa-
tion-defined
code

Implementation-defined information
type

CHARACTER(L1) or INTEGER21000
through
24999

SQL implementation information

INTEGER25000
through
29999

SQL sizing information

CHARACTER(L1) or INTEGER11000
through
14999

Implementation-defined implementa-
tion information

INTEGER15000
through
19999

Implementation-defined sizing informa-
tion

1 L is the implementation-defined maximum length of a variable-length character string.

94 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

NOTE 12 — Additional implementation information items are defined in Subclause 6.44, “SQL_IMPLEMENTATION_INFO base
table”, in ISO/IEC 9075-2.

Additional sizing items are defined in Subclause 6.45, “SQL_SIZING base table”, in ISO/IEC 9075-2.

Table 30 — Codes and data types for session implementation information

<general value specification>Data TypeCodeInformation Type

USER and CURRENT_USERCHARACTER(L†)47CURRENT USER

CURRENT_DEFAULT_TRANS-
FORM_GROUP

CHARACTER(L†)20004CURRENT
DEFAULT TRANS-
FORM GROUP

CURRENT_PATHCHARACTER(L†)20005CURRENT PATH

CURRENT_ROLECHARACTER(L†)20006CURRENT ROLE

SESSION_USERCHARACTER(L†)20007SESSION USER

SYSTEM_USERCHARACTER(L†)20008SYSTEM USER

CURRENT_CATALOGCHARACTER(L†)20009CURRENT CATA-
LOG

CURRENT_SCHEMACHARACTER(L†)20010CURRENT SCHEMA

† Where L is the implementation-defined maximum length of the corresponding <general value specification>.

Table 31 — Values for TRANSACTION ISOLATION OPTION with StartTran

ValueInformation Type

1 (one)READ UNCOMMITTED

2READ COMMITTED

4REPEATABLE READ

8SERIALIZABLE

Table 32 — Values for TRANSACTION ACCESS MODE with StartTran

ValueInformation Type

1 (one)READ ONLY

Call-Level Interface specifications 95

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

ValueInformation Type

2READ WRITE

Table 33 — Codes used for concise data types

CodeData Type

< 0 (zero)Implementation-defined data type

1 (one)CHARACTER

1 (one)CHAR

2NUMERIC

3DECIMAL

3DEC

4INTEGER

4INT

5SMALLINT

6FLOAT

7REAL

8DOUBLE

60BINARY

61BINARY VARYING

61VARBINARY

12CHARACTER VARYING

12CHAR VARYING

12VARCHAR

16BOOLEAN

17USER-DEFINED TYPE

19ROW

20REF

96 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

CodeData Type

25BIGINT

30BINARY LARGE OBJECT

30BLOB

40CHARACTER LARGE OBJECT

40CLOB

50ARRAY

55MULTISET

91DATE

92TIME

93TIMESTAMP

94TIME WITH TIME ZONE

95TIMESTAMP WITH TIME ZONE

101INTERVAL YEAR

102INTERVAL MONTH

103INTERVAL DAY

104INTERVAL HOUR

105INTERVAL MINUTE

106INTERVAL SECOND

107INTERVAL YEAR TO MONTH

108INTERVAL DAY TO HOUR

109INTERVAL DAY TO MINUTE

110INTERVAL DAY TO SECOND

111INTERVAL HOUR TO MINUTE

112INTERVAL HOUR TO SECOND

113INTERVAL MINUTE TO SECOND

Call-Level Interface specifications 97

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 34 — Codes used with concise datetime data types in SQL/CLI

Datetime Interval CodeData Type CodeConcise Data Type Code

1 (one)991

2992

3993

4994

5995

Table 35 — Codes used with concise interval data types in SQL/CLI

Datetime Interval CodeData Type CodeConcise Data Type Code

1 (one)10101

210102

310103

410104

510105

610106

710107

810108

910109

1010110

1110111

1210112

1310113

98 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 36 — Concise codes used with datetime data types in SQL/CLI

Concise CodeDatetime Interval Code

911 (one)

922

933

944

955

Table 37 — Concise codes used with interval data types in SQL/CLI

CodeDatetime Interval Code

1011 (one)

1022

1033

1044

1055

1066

1077

1088

1099

11010

11111

11212

11313

Call-Level Interface specifications 99

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

Table 38 — Special parameter values

Data TypeValueValue Name

CHARACTER(1)'%'ALL CATALOGS

CHARACTER(1)'%'ALL SCHEMAS

CHARACTER(1)'%'ALL TYPES

Table 39 — Column types and scopes used with SpecialColumns

IndicatesCodeContext

BEST ROWID1
(one)

Special Column Type

SCOPE CURRENT ROW0
(zero)

Scope of Row Id

SCOPE TRANSACTION1
(one)

Scope of Row Id

SCOPE SESSION2Scope of Row Id

PSEUDO UNKNOWN0
(zero)

Pseudo Column Flag

NOT PSEUDO1
(one)

Pseudo Column Flag

PSEUDO2Pseudo Column Flag

100 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tables associated with CLI

5.15 SQL/CLI data type correspondences

This Subclause is modified by Subclause 19.5, “SQL/CLI data type correspondences”, in ISO/IEC 9075-9.

Function

Specify the SQL/CLI data type correspondences for SQL data types and host language types associated with
the required parameter mechanisms, as shown in Table 3, “Supported calling conventions of SQL/CLI routines
by language”.

In the following tables, let P be <precision>, S be <scale>, L be <length>, T be <time fractional seconds preci-
sion>, and Q be <interval qualifier>.

Tables

Table 40 — SQL/CLI data type correspondences for Ada

Ada Data TypeSQL Data Type

NoneARRAY

SQL_STANDARD.INTARRAY LOCATOR

SQL_STANDARD.BIGINTBIGINT

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY (L)

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY LARGE OBJECT (L)

SQL_STANDARD.INTBINARY LARGE OBJECT LOCA-
TOR

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY VARYING (L)

SQL_STANDARD.BOOLEANBOOLEAN

SQL_STANDARD.CHAR, with P'LENGTH of LCHARACTER (L)

SQL_STANDARD.CHAR, with P'LENGTH of LCHARACTER LARGE OBJECT (L)

SQL_STANDARD.INTCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECIMAL(P,S)

Call-Level Interface specifications 101

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

Ada Data TypeSQL Data Type

SQL_STANDARD.DOUBLE_PRECISIONDOUBLE PRECISION

NoneFLOAT(P)

SQL_STANDARD.INTINTEGER

NoneINTERVAL(Q)

NoneMULTISET

SQL_STANDARD.INTMULTISET LOCATOR

NoneNUMERIC(P,S)

SQL_STANDARD.REALREAL

SQL_STANDARD.CHAR with P'LENGTH of LREF

NoneROW

SQL_STANDARD.SMALLINTSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

SQL_STANDARD.INTUSER-DEFINED TYPE LOCATOR

Table 41 — SQL/CLI data type correspondences for C

C Data TypeSQL Data Type

NoneARRAY

longARRAY LOCATOR

long longBIGINT

char, with length LBINARY (L)

char, with length LBINARY LARGE OBJECT (L)

longBINARY LARGE OBJECT LOCA-
TOR

char, with length LBINARY VARYING (L)

102 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

C Data TypeSQL Data Type

shortBOOLEAN

char, with length (L+1)*k1CHARACTER (L)

char, with length (L+1)*k1CHARACTER LARGE OBJECT (L)

longCHARACTER LARGE OBJECT
LOCATOR

char, with length (L+1)*k1CHARACTER VARYING (L)

NoneDATE

NoneDECIMAL(P,S)

doubleDOUBLE PRECISION

NoneFLOAT(P)

longINTEGER

NoneINTERVAL(Q)

NoneMULTISET

longMULTISET LOCATOR

NoneNUMERIC(P,S)

floatREAL

char, with length LREF

NoneROW

shortSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

longUSER-DEFINED TYPE LOCATOR

1 k is the length in units of C char of the largest character in the character set associated with the SQL data type.

Call-Level Interface specifications 103

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

Table 42 — SQL/CLI data type correspondences for COBOL

COBOL Data TypeSQL Data Type

NoneARRAY

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

ARRAY LOCATOR

PICTURE S9(BPI) USAGE BINARY, where BPI is implemen-
tation-defined

BIGINT

alphanumeric, with length LBINARY (L)

alphanumeric, with length LBINARY LARGE OBJECT (L)

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

BINARY LARGE OBJECT LOCA-
TOR

alphanumeric, with length LBINARY VARYING (L)

PICTURE XBOOLEAN

alphanumeric, with length LCHARACTER (L)

alphanumeric, with length LCHARACTER LARGE OBJECT (L)

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

CHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECIMAL(P,S)

NoneDOUBLE PRECISION

NoneFLOAT(P)

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

INTEGER

NoneINTERVAL(Q)

NoneMULTISET

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

MULTISET LOCATOR

104 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

COBOL Data TypeSQL Data Type

USAGE DISPLAY SIGN LEADING SEPARATE, with PIC-

TURE as specified1
NUMERIC(P,S)

NoneREAL

alphanumeric, with length LREF

NoneROW

PICTURE S9(SPI) USAGE BINARY, where SPI is implemen-
tation-defined

SMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

USER-DEFINED TYPE LOCATOR

1 Case:

1) If S = P, then a PICTURE with an 'S' followed by a 'V' followed by P '9's.

2) If P > S > 0 (zero), then a PICTURE with an 'S' followed by P-S '9's followed by a 'V' followed by S '9's.

3) If S = 0 (zero), then a PICTURE with an 'S' followed by P '9's optionally followed by a 'V'.

Table 43 — SQL/CLI data type correspondences for Fortran

Fortran Data TypeSQL Data Type

NoneARRAY

INTEGERARRAY LOCATOR

NoneBIGINT

CHARACTER, with length LBINARY (L)

CHARACTER, with length LBINARY LARGE OBJECT (L)

INTEGERBINARY LARGE OBJECT LOCA-
TOR

CHARACTER, with length LBINARY VARYING (L)

LOGICALBOOLEAN

Call-Level Interface specifications 105

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

Fortran Data TypeSQL Data Type

CHARACTER, with length LCHARACTER (L)

CHARACTER, with length LCHARACTER LARGE OBJECT (L)

INTEGERCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECIMAL(P,S)

DOUBLE PRECISIONDOUBLE PRECISION

NoneFLOAT(P)

INTEGERINTEGER

NoneINTERVAL(Q)

NoneMULTISET

INTEGERMULTISET LOCATOR

NoneNUMERIC(P,S)

REALREAL

CHARACTER, with length LREF

NoneROW

NoneSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

INTEGERUSER-DEFINED TYPE LOCATOR

Table 44 — SQL/CLI data type correspondences for M

M Data TypeSQL Data Type

NoneARRAY

106 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

M Data TypeSQL Data Type

characterARRAY LOCATOR

NoneBIGINT

characterBINARY (L)

characterBINARY LARGE OBJECT (L)

characterBINARY LARGE OBJECT LOCA-
TOR

characterBINARY VARYING (L)

NoneBOOLEAN

NoneCHARACTER (L)

characterCHARACTER LARGE OBJECT (L)

characterCHARACTER LARGE OBJECT
LOCATOR

character with maximum length LCHARACTER VARYING (L)

NoneDATE

characterDECIMAL(P,S)

NoneDOUBLE PRECISION

NoneFLOAT(P)

characterINTEGER

NoneINTERVAL(Q)

NoneMULTISET

characterMULTISET LOCATOR

characterNUMERIC(P,S)

characterREAL

characterREF

NoneROW

NoneSMALLINT

Call-Level Interface specifications 107

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

M Data TypeSQL Data Type

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

characterUSER-DEFINED TYPE LOCATOR

Table 45 — SQL/CLI data type correspondences for Pascal

Pascal Data TypeSQL Data Type

NoneARRAY

INTEGERARRAY LOCATOR

NoneBIGINT

PACKED ARRAY[1..L] OF CHARBINARY (L)

PACKED ARRAY[1..L] OF CHARBINARY LARGE OBJECT (L), L > 1
(one)

INTEGERBINARY LARGE OBJECT LOCA-
TOR

PACKED ARRAY[1..L] OF CHARBINARY VARYING (L)

BOOLEANBOOLEAN

CHARCHARACTER (1)

PACKED ARRAY[1..L] OF CHARCHARACTER (L), L > 1 (one)

PACKED ARRAY[1..L] OF CHARCHARACTER LARGE OBJECT (L),
L > 1 (one)

INTEGERCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECIMAL(P,S)

NoneDOUBLE PRECISION

108 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

Pascal Data TypeSQL Data Type

NoneFLOAT(P)

INTEGERINTEGER

NoneINTERVAL(Q)

NoneMULTISET

INTEGERMULTISET LOCATOR

NoneNUMERIC(P,S)

REALREAL

PACKED ARRAY[1..L] OF CHARREF, L > 1 (one)

NoneROW

NoneSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE

INTEGERUSER-DEFINED TYPE LOCATOR

Table 46 — SQL/CLI data type correspondences for PL/I

PL/I Data TypeSQL Data Type

NoneARRAY

FIXED BINARY(PI), where PI is implementation-definedARRAY LOCATOR

FIXED BINARY(BPI), where BPI is implementation-definedBIGINT

CHARACTER(L)BINARY (L)

CHARACTER VARYING(L)BINARY LARGE OBJECT (L)

FIXED BINARY(PI), where PI is implementation-definedBINARY LARGE OBJECT LOCA-
TOR

CHARACTER(L) VARYINGBINARY VARYING (L)

BIT(1)BOOLEAN

Call-Level Interface specifications 109

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

PL/I Data TypeSQL Data Type

CHARACTER(L)CHARACTER (L)

CHARACTER VARYING(L)CHARACTER LARGE OBJECT (L)

FIXED BINARY(PI), where PI is implementation-definedCHARACTER LARGE OBJECT
LOCATOR

CHARACTER VARYING(L)CHARACTER VARYING (L)

NoneDATE

FIXED DECIMAL(P,S)DECIMAL(P,S)

NoneDOUBLE PRECISION

FLOAT BINARY (P)FLOAT(P)

FIXED BINARY(PI), where PI is implementation-definedINTEGER

NoneINTERVAL(Q)

NoneMULTISET

FIXED BINARY(PI), where PI is implementation-definedMULTISET LOCATOR

NoneNUMERIC(P,S)

NoneREAL

CHARACTER VARYING (L)REF

NoneROW

FIXED BINARY(SPI), where SPI is implementation-definedSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUSER-DEFINED TYPE LOCATOR

FIXED BINARY(PI), where PI is implementation-definedUSER-DEFINED TYPE

110 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI data type correspondences

6 SQL/CLI routines

This Clause is modified by Clause 20, “SQL/CLI routines”, in ISO/IEC 9075-9.

Subclause 5.1, “<CLI routine>”, defines a generic CLI routine. This Subclause describes the individual CLI
routines in alphabetical order.

For convenience, the variable <CLI name prefix> is omitted and the <CLI generic name> is used for the
descriptions. For presentation purposes (and purely arbitrarily), the routines are presented as functions rather
than as procedures.

6.1 AllocConnect

Function

Allocate an SQL-connection and assign a handle to it.

Definition

AllocConnect (
 EnvironmentHandle IN INTEGER,
 ConnectionHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) AllocHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE, with EH as the
value of InputHandle and with ConnectionHandle as OutputHandle.

SQL/CLI routines 111

CD 9075-3:200x(E)
6.1 AllocConnect

6.2 AllocEnv

Function

Allocate an SQL-environment and assign a handle to it.

Definition

AllocEnv (
 EnvironmentHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) AllocHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE, with zero as
the value of InputHandle, and with EnvironmentHandle as OutputHandle.

112 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.2 AllocEnv

6.3 AllocHandle

Function

Allocate a resource and assign a handle to it.

Definition

AllocHandle (
 HandleType IN SMALLINT,
 InputHandle IN INTEGER,
 OutputHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let IH be the value of InputHandle.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If the maximum number of SQL-environments that can be allocated at one time has already
been reached, then an exception condition is raised: CLI-specific condition — limit on number
of handles exceeded. A skeleton SQL-environment is allocated and is assigned a unique value
that is returned in OutputHandle.

ii) Case:

1) If the memory requirements to manage an SQL-environment cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

NOTE 13 — No diagnostic information is generated in this case as there is no valid environment handle that
can be used in order to obtain diagnostic information.

2) If the resources to manage an SQL-environment cannot be allocated for implementation-
defined reasons, then an implementation-defined exception condition is raised. A skeleton
SQL-environment is allocated and is assigned a unique value that is returned in OutputHandle.

3) Otherwise, the resources to manage an SQL-environment are allocated and are referred to
as an allocated SQL-environment. The allocated SQL-environment is assigned a unique
value that is returned in OutputHandle.

b) If HT indicates CONNECTION HANDLE, then:

i) If IH does not identify an allocated SQL-environment or if it identifies an allocated skeleton
SQL-environment, then OutputHandle is set to zero and an exception condition is raised: CLI-
specific condition — invalid handle.

SQL/CLI routines 113

CD 9075-3:200x(E)
6.3 AllocHandle

ii) Let E be the allocated SQL-environment identified by IH.

iii) The diagnostics area associated with E is emptied.

iv) If the maximum number of SQL-connections that can be allocated at one time has already been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

v) Case:

1) If the memory requirements to manage an SQL-connection cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

2) If the resources to manage an SQL-connection cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined exception
condition is raised.

3) Otherwise, the resources to manage an SQL-connection are allocated and are referred to as
an allocated SQL-connection. The allocated SQL-connection is associated with E and is
assigned a unique value that is returned in OutputHandle.

c) If HT indicates STATEMENT HANDLE, then:

i) If IH does not identify an allocated SQL-connection, then OutputHandle is set to zero and an
exception condition is raised: CLI-specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set to zero
and an exception condition is raised: connection exception — connection does not exist. Otherwise,
let EC be the established SQL-connection associated with C.

v) If the maximum number of SQL-statements that can be allocated at one time has already been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

vii) If the memory requirements to manage an SQL-statement cannot be satisfied, then OutputHandle
is set to zero and an exception condition is raised: CLI-specific condition — memory allocation
error.

viii) If the resources to manage an SQL-statement cannot be allocated for implementation-defined
reasons, then OutputHandle is set to zero and an implementation-defined exception condition
is raised.

ix) The resources to manage an SQL-statement are allocated and are referred to as an allocated
SQL-statement. The allocated SQL-statement is associated with C and is assigned a unique value
that is returned in OutputHandle.

x) The following CLI descriptor areas are automatically allocated and associated with the allocated
SQL-statement:

114 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.3 AllocHandle

An implementation parameter descriptor.1)

2) An implementation row descriptor.

3) An application parameter descriptor.

4) An application row descriptor.

For each of these descriptor areas, the ALLOC_TYPE field is set to indicate AUTOMATIC.
For each of these descriptor areas, fields with non-blank entries in Table 24, “SQL/CLI
descriptor field default values”, are set to the specified default values. All other fields in the CLI
item descriptor areas are initially undefined.

xi) The automatically allocated application parameter descriptor becomes the current application
parameter descriptor for the allocated SQL-statement and the automatically allocated application
row descriptor becomes the current application row descriptor for the allocated SQL-statement.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If IH does not identify an allocated SQL-connection then OutputHandle is set to zero and an
exception condition is raised: CLI-specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set to zero
and an exception condition is raised: connection exception — connection does not exist. Otherwise,
let EC be the established SQL-connection associated with C.

v) If the maximum number of CLI descriptor areas that can be allocated at one time has already
been reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

vii) Case:

1) If the memory requirements to manage a CLI descriptor area cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

2) If the resources to manage a CLI descriptor area cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined exception
condition is raised.

3) Otherwise, the resources to manage a CLI descriptor area are allocated and are referred to
as an allocated CLI descriptor area. The allocated CLI descriptor area is associated with C
and is assigned a unique value that is returned in OutputHandle. The ALLOC_TYPE field
of the allocated CLI descriptor area is set to indicate USER. Other fields of the allocated
CLI descriptor area are set to the default values for an ARD specified in Table 24, “SQL/CLI
descriptor field default values”. Fields in the CLI item descriptor areas not set to a default
value are initially undefined.

SQL/CLI routines 115

CD 9075-3:200x(E)
6.3 AllocHandle

6.4 AllocStmt

Function

Allocate an SQL-statement and assign a handle to it.

Definition

AllocStmt (
 ConnectionHandle IN INTEGER,
 StatementHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) AllocHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE, with CH as the
value of InputHandle, and with StatementHandle as OutputHandle.

116 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.4 AllocStmt

6.5 BindCol

Function

Describe a target specification or array of target specifications.

Definition

BindCol (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue DEFOUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind DEFOUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application row descriptor for S.

3) Let ARD be the allocated CLI descriptor area identified by HV and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

4) Let CN be the value of ColumnNumber.

5) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

6) If CN is greater than N, then

Case:

a) If the memory requirements to manage the larger ARD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of ARD is set to CN and the COUNT field of ARD is
incremented by 1 (one).

7) Let TT be the value of TargetType.

8) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondences table as the SQL
data type column and the host data type column.

9) If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) TT does not indicate DEFAULT and is not one of the code values in Table 8, “Codes used for application
data types in SQL/CLI”.

SQL/CLI routines 117

CD 9075-3:200x(E)
6.5 BindCol

b) TT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

10) Let BL be the value of BufferLength.

11) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

12) Let IDA be the item descriptor area of ARD specified by CN.

13) If an exception condition is raised in any of the following General Rules, then the TYPE, OCTET_LENGTH,
LENGTH, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields of IDA
are set to implementation-dependent values and the value of COUNT for ARD is unchanged.

14) The data type of the <target specification> described by IDA is set to TT.

15) The length in octets of the <target specification> described by IDA is set to BL.

16) The length in characters or positions of the <target specification> described by IDA is set to the maximum
number of characters or positions that may be represented by the data type TT.

17) The address of the host variable or array of host variables that is to receive a value or values for the <target
specification> or <target specification>s described by IDA is set to the address of TargetValue. If TargetValue
is a null pointer, then the address is set to 0 (zero).

18) The address of the <indicator variable> or array of <indicator variable>s associated with the host variable
or host variables addressed by the DATA_POINTER field of IDA is set to the address of StrLen_or_Ind.

19) The address of the host variable or array of host variables that is to receive the returned length (in characters)
of the <target specification> or <target specification>s described by IDA is set to the address of
StrLen_or_Ind.

20) Restrictions on the differences allowed between ARD and IRD are implementation-defined, except as
specified in the General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the General Rules
of Subclause 6.30, “GetData”.

118 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.5 BindCol

6.6 BindParameter

Function

Describe a dynamic parameter specification and its value.

Definition

BindParameter (
 StatementHandle IN INTEGER,
 ParameterNumber IN SMALLINT,
 InputOutputMode IN SMALLINT,
 ValueType IN SMALLINT,
 ParameterType IN SMALLINT,
 ColumnSize IN INTEGER,
 DecimalDigits IN SMALLINT,
 ParameterValue DEF ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind DEF INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application parameter descriptor for S.

3) Let APD be the allocated CLI descriptor area identified by HV and let N2 be the value of the
TOP_LEVEL_COUNT field of APD.

4) Let PN be the value of ParameterNumber.

5) If PN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

6) Let IOM be the value of InputOutputMode.

7) If IOM is not one of the code values in Table 11, “Codes associated with <parameter mode> in SQL/CLI”,
then an exception condition is raised: CLI-specific condition — invalid parameter mode.

8) Let VT be the value of ValueType.

9) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

10) If any of the following are true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) VT does not indicate DEFAULT and is not one of the code values in Table 8, “Codes used for application
data types in SQL/CLI”.

SQL/CLI routines 119

CD 9075-3:200x(E)
6.6 BindParameter

b) VT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

11) Let PT be the value of ParameterType.

12) If PT is not one of the code values in Table 33, “Codes used for concise data types”, then an exception
condition is raised: CLI-specific condition — invalid data type.

13) Let IPD be the implementation parameter descriptor associated with S and let N1 be the value of the
TOP_LEVEL_COUNT field of IPD.

14) If PN is greater than N1, then

Case:

a) If the memory requirements to manage the larger IPD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of IPD is set to PN and the COUNT field of APD is
incremented by 1 (one).

15) If PN is greater than N2, then

Case:

a) If the memory requirements to manage the larger APD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of APD is set to PN and the COUNT field of APD is
incremented by 1 (one).

16) Let IDA1 be the item descriptor area of IPD specified by PN.

17) Let CS be the value of ColumnSize, let DD be the value of DecimalDigits, and let BL be the value of
BufferLength.

18) Case:

a) If PT is one of the values listed in Table 34, “Codes used with concise datetime data types in SQL/CLI”,
then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a code
shown in the Data Type Code column of Table 34, “Codes used with concise datetime data types
in SQL/CLI”, indicating the concise data type code.

ii) The datetime interval code of the <dynamic parameter specification> described by IDA1 is set
to a code shown in the Datetime Interval Code column in Table 34, “Codes used with concise
datetime data types in SQL/CLI”, indicating the concise data type code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1 is set to
CS.

iv) Case:

1) If the datetime interval code of the <dynamic parameter specification> indicates DATE,
then the time fractional seconds precision of the <dynamic parameter specification> described
by IDA1 is set to zero.

120 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.6 BindParameter

2) Otherwise, the time fractional seconds precision of the <dynamic parameter specification>
described by IDA1 is set to DD.

b) If PT is one of the values listed in Table 35, “Codes used with concise interval data types in SQL/CLI”,
then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a code
shown in the Data Type Code column of Table 35, “Codes used with concise interval data types
in SQL/CLI”, indicating the concise data type code.

ii) The datetime interval code of the <dynamic parameter specification> described by IDA1 is set
to a code shown in the Datetime Interval Code column in Table 35, “Codes used with concise
interval data types in SQL/CLI”, indicating the concise data type code. Let DIC be that code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1 is set to
CS.

iv) Let LS be 0 (zero).

v) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer,
and BL is greater than zero, then:

1) Let PV be the value of ParameterValue.

2) Let FC be the value of

SUBSTR (PV FROM 1 FOR 1)

3) If FC is <plus sign> or <minus sign>, then let LS be 1 (one).

vi) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval fractional seconds precision of the <dynamic parameter specifi-
cation> described by IDA1 is set to DD. If DD is 0 (zero), then let DP be 0 (zero); otherwise,
let DP be 1 (one).

2) Otherwise, the interval fractional seconds precision of the <dynamic parameter specification>
described by IDA1 is set to zero.

vii) Case:

1) If DIC indicates YEAR TO MONTH, DAY TO HOUR, HOUR TO MINUTE or MINUTE
TO SECOND, then let IL be 3.

2) If DIC indicates DAY TO MINUTE or HOUR TO SECOND, then let IL be 6.

3) If DIC indicates DAY TO SECOND, then let IL be 9.

4) Otherwise, let IL be zero.

viii) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval leading field precision of the <dynamic parameter specification>
described by IDA1 is set to CS–IL–DD–DP–LS.

SQL/CLI routines 121

CD 9075-3:200x(E)
6.6 BindParameter

2) Otherwise, the interval leading field precision of the <dynamic parameter specification>
described by IDA1 is set to CS–IL–LS.

c) Otherwise:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to PT.

ii) If PT indicates a character string type, then the length (in characters) of the <dynamic parameter
specification> described by IDA1 is set to CS.

iii) If PT indicates a numeric type, then the precision of the <dynamic parameter specification>
described by IDA1 is set to CS.

iv) If PT indicates a numeric type, then the scale of the <dynamic parameter specification> described
by IDA1 is set to DD.

19) Let IDA2 be the item descriptor area of APD specified by PN.

20) If an exception condition is raised in any of the following General Rules, then:

a) The TYPE, LENGTH, PRECISION, and SCALE fields of IDA1 are set to implementation-dependent
values and the values of the TOP_LEVEL_COUNT and COUNT fields of IPD are unchanged.

b) The TYPE, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields
of IDA2 are set to implementation-dependent values and the values of the TOP_LEVEL_COUNT and
COUNT fields of APD are unchanged.

21) The parameter mode of the <dynamic parameter specification> described by IDA2 is set to IOM.

22) The data type of the <dynamic parameter specification> described by IDA2 is set to VT.

23) The address of the host variable that is to provide a value for the <dynamic parameter specification> value
described by IDA2 is set to the address of ParameterValue. If ParameterValue is a null pointer, then the
address is set to 0 (zero).

24) The address of the <indicator variable> associated with the host variable addressed by the DATA_POINTER
field of IDA2 is set to the address of StrLen_or_Ind.

25) The address of the host variable that is to define the length (in octets) of the <dynamic parameter specifica-
tion> value described by IDA2 is set to the address of StrLen_or_Ind.

26) If IOM is PARAM MODE OUT or PARAM MODE INOUT and BL is not greater than zero, then an
exception condition is raised: CLI-specific condition — invalid string length or buffer length.

27) The length in octets of the <dynamic parameter specification> value described by IDA2 is set to BL.

28) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer, and BL
is greater than 0 (zero), then let PV be the value of the <dynamic parameter specification> value described
by IDA2.

29) Restrictions on the differences allowed between APD and IPD are implementation-defined, except as
specified in the General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”,
Subclause 5.7, “Implicit CALL USING clause”, and the General Rules of Subclause 6.49, “ParamData”.

122 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.6 BindParameter

6.7 Cancel

Function

Attempt to cancel execution of a CLI routine.

Definition

Cancel (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is a CLI routine concurrently operating on S, then:

i) Let RN be the routine name of the concurrent CLI routine.

ii) Let C be the allocated SQL-connection with which S is associated.

iii) Let EC be the established SQL-connection associated with C and let SS be the SQL-server
associated with EC.

iv) SS is requested to cancel the execution of RN.

v) If SS rejects the cancellation request, then an exception condition is raised: CLI-specific condition
— server declined the cancellation request.

vi) If SS accepts the cancellation request, then a completion condition is raised: successful completion.

NOTE 14 — Acceptance of the request does not guarantee that the execution of RN will be cancelled.

vii) If SS succeeds in canceling the execution of RN, then an exception condition is raised for RN:
CLI-specific condition — operation canceled.

NOTE 15 — Canceling the execution of RN does not destroy any diagnostic information already generated by its
execution.

NOTE 16 — The method of passing control between concurrently operating programs is implementation-dependent.

b) If there is a deferred parameter number associated with S, then:

i) The diagnostics area associated with S is emptied.

ii) The deferred parameter number is removed from association with S.

iii) Any statement source associated with S is removed from association with S.

c) Otherwise:

i) The diagnostics area associated with S is emptied.

SQL/CLI routines 123

CD 9075-3:200x(E)
6.7 Cancel

ii) A completion condition is raised: successful completion.

124 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.7 Cancel

6.8 CloseCursor

Function

Close a cursor.

Definition

CloseCursor (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

3) Case:

a) If there is no open cursor associated with S, then an exception condition is raised: invalid cursor state.

b) Otherwise:

i) The open cursor associated with S is placed in the closed state and its copy of the select source
is destroyed.

ii) Any fetched row associated with S is removed from association with S.

SQL/CLI routines 125

CD 9075-3:200x(E)
6.8 CloseCursor

6.9 ColAttribute

Function

Get a column attribute.

Definition

ColAttribute (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 CharacterAttribute OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT,
 NumericAttribute OUT INTEGER)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) Let FI be the value of FieldIdentifier.

5) If FI is not one of the code values in Table 21, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

6) Let CN be the value of ColumnNumber.

7) Let TYPE be the value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

8) Let FDT be the value of the Data Type column in the row of Table 6, “Fields in SQL/CLI row and param-
eter descriptor areas”, whose Field column contains the value of the Field column in the row of Table 21,
“Codes used for SQL/CLI descriptor fields”, that contains FI.

9) If TYPE is 'ITEM', then:

a) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement not a
cursor specification.

b) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

126 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.9 ColAttribute

c) If CN is greater than N, then a completion condition is raised: no data.

d) Let IDA be the item descriptor area of IRD specified by the CN-th descriptor area in IRD for which
LEVEL is 0 (zero).

e) Let DT and DIC be the values of the TYPE and DATETIME_INTERVAL_CODE fields, respectively,
for IDA.

10) If TYPE is 'HEADER', then:

a) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

b) If CN is greater than N, then a completion condition is raised: no data.

c) Let CN be 0 (zero).

11) Let DH be the handle that identifies IRD.

12) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which LEVEL is
0 (zero).

Case:

a) If FDT indicates character string, then let the information be retrieved from IRD by implicitly executing
GetDescField as follows:

GetDescField (DH, RI, FI,
 CharacterAttribute, BufferLength, StringLength)

b) Otherwise,

Case:

i) If FI indicates TYPE, then

Case:

1) If DT indicates a <datetime type>, then NumericAttribute is set to the concise code value
corresponding to the datetime interval code value DIC as defined in Table 36, “Concise
codes used with datetime data types in SQL/CLI”.

2) If DT indicates INTERVAL, then NumericAttribute is set to the concise code value corre-
sponding to the datetime interval code value DIC as defined in Table 37, “Concise codes
used with interval data types in SQL/CLI”.

3) Otherwise, NumericAttribute is set to DT.

ii) Otherwise, let the information be retrieved from IRD by implicitly executing GetDescField as
follows:

GetDescField (DH, RI, FI,
 NumericAttribute, BufferLength, StringLength)

SQL/CLI routines 127

CD 9075-3:200x(E)
6.9 ColAttribute

6.10 ColumnPrivileges

Function

Return a result set that contains a list of the privileges held on the columns whose names adhere to the requested
pattern or patterns within a single specified table stored in the Information Schema of the connected data source.

Definition

ColumnPrivileges (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 ColumnName IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined maximum length
of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let COLUMN_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE COLUMN_PRIVILEGES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 GRANTOR CHARACTER VARYING(128),
 GRANTEE CHARACTER VARYING(128) NOT NULL,
 PRIVILEGE CHARACTER VARYING(128) NOT NULL,
 IS_GRANTABLE CHARACTER VARYING(3))

6) COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS's Information Schema COL-
UMN_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

128 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.10 ColumnPrivileges

b) Case:

i) If the value of SUP is 1 (one), then COLUMN_PRIVILEGES_QUERY contains a row for each
privilege in SS's Information Schema COLUMN_PRIVILEGES view.

ii) Otherwise, COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS's Informa-
tion Schema COLUMN_PRIVILEGES view that meets implementation-defined authorization
criteria.

7) For each row of COLUMN_PRIVILEGES_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is the null value; otherwise,
the value of TABLE_CAT in COLUMN_PRIVILEGES_QUERY is the value of the TABLE_CATALOG
column in the COLUMN_PRIVILEGES view in the Information Schema.

b) The value of TABLE_SCHEM in COLUMN_PRIVILEGES_QUERY is the value of the
TABLE_SCHEMA column in the COLUMN_PRIVILEGES view.

c) The value of TABLE_NAME in COLUMN_PRIVILEGES_QUERY is the value of the TABLE_NAME
column in the COLUMN_PRIVILEGES view.

d) The value of COLUMN_NAME in COLUMN_PRIVILEGES_QUERY is the value of the COL-
UMN_NAME column in the COLUMN_PRIVILEGES view.

e) The value of GRANTOR in COLUMN_PRIVILEGES_QUERY is the value of the GRANTOR column
in the COLUMN_PRIVILEGES view.

f) The value of GRANTEE in COLUMN_PRIVILEGES_QUERY is the value of the GRANTEE column
in the COLUMN_PRIVILEGES view.

g) The value of PRIVILEGE in COLUMN_PRIVILEGES_QUERY is the value of the PRIVILEGE_TYPE
column in the COLUMN_PRIVILEGES view.

h) The value of IS_GRANTABLE in COLUMN_PRIVILEGES_QUERY is the value of the
IS_GRANTABLE column in the COLUMN_PRIVILEGES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and Name-
Length4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName, TableName,
and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, is 'Y', then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer or if ColumnName is a null pointer, then an exception condition is
raised: CLI-specific condition — invalid use of null pointer.

11) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid use
of null pointer.

12) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero. If ColumnName is a null pointer, then NL4
is set to zero.

SQL/CLI routines 129

CD 9075-3:200x(E)
6.10 ColumnPrivileges

13) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

14) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.

15) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

16) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let COLVAL be the first L octets of ColumnName.

17) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

130 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.10 ColumnPrivileges

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

SQL/CLI routines 131

CD 9075-3:200x(E)
6.10 ColumnPrivileges

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('COLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('COLVAL') FROM CHAR_LENGTH(TRIM('COLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('COLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('COLVAL')) - 2)

and let COLSTR be the character string:

COLUMN_NAME = 'TEMPSTR'

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER('COLVAL')

b) Otherwise,

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation informa-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that same
table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with the value
of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM = 'SCHVAL' AND

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME = 'TBLVAL' AND

vi) If the value of NL4 is zero, then let COLSTR be a zero-length string; otherwise, let COLSTR be
the character string:

COLUMN_NAME LIKE 'COLVAL' ESCAPE 'ESC' AND

132 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.10 ColumnPrivileges

18) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || COLSTR || ' ' || 1=1

19) Let STMT be the character string:

SELECT *
FROM COLUMN_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, PRIVILEGE

20) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

SQL/CLI routines 133

CD 9075-3:200x(E)
6.10 ColumnPrivileges

6.11 Columns

Function

Based on the specified selection criteria, return a result set that contains information about columns of tables
stored in the information schemas of the connected data source.

Definition

Columns (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 ColumnName IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined maximum length
of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let COLUMNS_QUERY be a table, with the definition:

CREATE TABLE COLUMNS_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 DATA_TYPE SMALLINT NOT NULL,
 TYPE_NAME CHARACTER VARYING(128) NOT NULL,
 COLUMN_SIZE INTEGER,
 BUFFER_LENGTH INTEGER,
 DECIMAL_DIGITS SMALLINT,
 NUM_PREC_RADIX SMALLINT,

NULLABLE SMALLINT NOT NULL,
 REMARKS CHARACTER VARYING(254),
 COLUMN_DEF CHARACTER VARYING(254),
 SQL_DATA_TYPE SMALLINT NOT NULL,
 SQL_DATETIME_SUB INTEGER,

134 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.11 Columns

 CHAR_OCTET_LENGTH INTEGER,
 ORDINAL_POSITION INTEGER NOT NULL,
 IS_NULLABLE CHARACTER VARYING(254),
 CHAR_SET_CAT CHARACTER VARYING(128),
 CHAR_SET_SCHEM CHARACTER VARYING(128),
 CHAR_SET_NAME CHARACTER VARYING(128),
 COLLATION_CAT CHARACTER VARYING(128),
 COLLATION_SCHEM CHARACTER VARYING(128),

COLLATION_NAME CHARACTER VARYING(128),
 UDT_CAT CHARACTER VARYING(128),
 UDT_SCHEM CHARACTER VARYING(128),
 UDT_NAME CHARACTER VARYING(128),
 DOMAIN_CAT CHARACTER VARYING(128),
 DOMAIN_SCHEM CHARACTER VARYING(128),
 DOMAIN_NAME CHARACTER VARYING(128),
 SCOPE_CAT CHARACTER VARYING(128),
 SCOPE_SCHEM CHARACTER VARYING(128),

SCOPE_NAME CHARACTER VARYING(128),
 MAX_CARDINALITY INTEGER,
 DTD_IDENTIFIER CHARACTER VARYING(128),
 IS_SELF_REF CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME))

6) COLUMNS_QUERY contains a row for each column described by SS's Information Schema COLUMNS
view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

b) Case:

i) If the value of SUP is 1 (one), then COLUMNS_QUERY contains a row for each row describing
a column in SS's Information Schema COLUMNS view.

ii) Otherwise, COLUMNS_QUERY contains a row for each row describing a column in SS's
Information Schema COLUMNS view that meets implementation-defined authorization criteria.

7) For each row of COLUMNS_QUERY:

a) The value of TABLE_CAT in COLUMNS_QUERY is the value of the TABLE_CATALOG column
in the COLUMNS view. If SS does not support catalog names, then TABLE_CAT is set to the null
value.

b) The value of TABLE_SCHEM in COLUMNS_QUERY is the value of the TABLE_SCHEMA column
in the COLUMNS view.

c) The value of TABLE_NAME in COLUMNS_QUERY is the value of the TABLE_NAME column in
the COLUMNS view.

d) The value of COLUMN_NAME in COLUMNS_QUERY is the value of the COLUMN_NAME column
in the COLUMNS view.

e) The value of DATA_TYPE in COLUMNS_QUERY is determined by the values of the DATA_TYPE
and INTERVAL_TYPE columns in the COLUMNS view.

Case:

SQL/CLI routines 135

CD 9075-3:200x(E)
6.11 Columns

i) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
DATA_TYPE in COLUMNS_QUERY is the appropriate 'Code' from Table 33, “Codes used for
concise data types”, that matches the interval specified in the INTERVAL_TYPE column in the
COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in COLUMNS_QUERY is the appropriate 'Code' from
Table 33, “Codes used for concise data types”, that matches the value specified in the
DATA_TYPE column in the COLUMNS view.

f) The value of TYPE_NAME in COLUMNS_QUERY is an implementation-defined value that is the
character string by which the data type is known at the data source.

g) The value of COLUMN_SIZE in COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER', 'CHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY', 'BINARY VARYING' or 'BINARY
LARGE OBJECT', then the value is that of the CHARACTER_MAXIMUM_LENGTH in the
same row of the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is 'DECIMAL' or 'NUMERIC', then the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS view.

iii) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT',
'FLOAT', 'REAL', or 'DOUBLE PRECISION', then the value is implementation-defined.

iv) If the value of DATA_TYPE in the COLUMNS view is 'DATE', 'TIME', 'TIMESTAMP', 'TIME
WITH TIME ZONE', or 'TIMESTAMP WITH TIME ZONE', then the value of COLUMN_SIZE
is that determined by SR 33), in Subclause 6.1, “<data type>”, in ISO/IEC 9075-2, where the
value of <time fractional seconds precision> is the value of the DATETIME_PRECISION column
in the same row of the COLUMNS view.

v) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of COL-
UMN_SIZE is that determined by the General Rules of Subclause 10.1, “<interval qualifier>”,
in ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in the same
row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_PRECISION
column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the NUMERIC_PRECI-
SION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is 'REF', then the value is the length in
octets of the reference type.

vii) Otherwise, the value is implementation-dependent.

h) The value of BUFFER_LENGTH in COLUMNS_QUERY is implementation-defined.

NOTE 17 — The purpose of BUFFER_LENGTH in COLUMNS_QUERY is to record the number of octets transferred for
the column with a Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the application row
descriptor indicates DEFAULT. This length excludes any null terminator.

i) The value of DECIMAL_DIGITS in COLUMNS_QUERY is

136 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.11 Columns

Case:

i) If the value of DATA_TYPE in the COLUMNS view is one of 'DATE', 'TIME', 'TIMESTAMP',
'TIME WITH TIME ZONE', or 'TIMESTAMP WITH TIME ZONE', then the value of DECI-
MAL_DIGITS in COLUMNS_QUERY is the value of the DATETIME_PRECISION column
in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of 'NUMERIC', 'DECIMAL',
'SMALLINT', 'INTEGER', or 'BIGINT', then the value of DECIMAL_DIGITS in
COLUMNS_QUERY is the value of the NUMERIC_SCALE column in the COLUMNS view.

iii) Otherwise, the value of DECIMAL_DIGITS in COLUMNS_QUERY is the null value.

j) The value of NUM_PREC_RADIX in COLUMNS_QUERY is the value of the NUMERIC_PRECI-
SION_RADIX column in the COLUMNS view.

k) If the value of the IS_NULLABLE column in the COLUMNS view is 'NO', then the value of NUL-
LABLE in COLUMNS_QUERY is set to the appropriate 'Code' for NO NULLS in Table 27, “Miscel-
laneous codes used in CLI”; otherwise it is set to the appropriate 'Code' for NULLABLE from Table 27,
“Miscellaneous codes used in CLI”.

l) The value of REMARKS in COLUMNS_QUERY is an implementation-defined description of the column.

m) The value of COLUMN_DEF in COLUMNS_QUERY is the value of the COLUMN_DEFAULT column
in the COLUMNS view.

n) The value of SQL_DATETIME_SUB in COLUMNS_QUERY is determined by the value of the
DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for the any of
the data types 'DATE', 'TIME', 'TIMESTAMP', 'TIME WITH TIME ZONE', or 'TIMESTAMP
WITH TIME ZONE' from Table 33, “Codes used for concise data types”, then the value is the
matching 'Datetime Interval Code' from Table 33, “Codes used for concise data types”.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for any of the
INTERVAL data types from Table 33, “Codes used for concise data types”, then the value is
the matching 'Datetime Interval Code' from Table 33, “Codes used for concise data types”.

iii) Otherwise, the value is the null value.

o) The value of CHAR_OCTET_LENGTH in COLUMNS_QUERY is the value of the CHARAC-
TER_OCTET_LENGTH column in the COLUMNS view.

p) The value of ORDINAL_POSITION in COLUMNS_QUERY is the value of the ORDINAL_POSITION
column in the COLUMNS view.

q) The value of IS_NULLABLE in COLUMNS_QUERY is the value of the IS_NULLABLE column in
the COLUMNS view.

r) The value of SQL_DATA_TYPE in COLUMNS_QUERY is determined by the value of the DATA_TYPE
column in the same row of the COLUMNS view.

Case:

SQL/CLI routines 137

CD 9075-3:200x(E)
6.11 Columns

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for any of the
data types 'DATE', 'TIME', 'TIMESTAMP', 'TIME WITH TIME ZONE', or 'TIMESTAMP
WITH TIME ZONE', from Table 33, “Codes used for concise data types”, then the value is the
matching 'Code' from Table 7, “Codes used for implementation data types in SQL/CLI”.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for any of the
INTERVAL data types from Table 33, “Codes used for concise data types”, then the value is
the matching 'Code' from Table 7, “Codes used for implementation data types in SQL/CLI”.

iii) Otherwise, the value is the same as the value of DATA_TYPE in COLUMNS_QUERY.

s) The value of CHAR_SET_CAT in COLUMNS_QUERY is the value of the CHARACTER_SET_CAT-
ALOG column in the COLUMNS view. If SS does not support catalog names, then CHAR_SET_CAT
is set to the null value.

t) The value of CHAR_SET_SCHEM in COLUMNS_QUERY is the value of the CHARAC-
TER_SET_SCHEMA column in the COLUMNS view.

u) The value of CHAR_SET_NAME in COLUMNS_QUERY is the value of the CHARAC-
TER_SET_NAME column in the COLUMNS view.

v) The value of COLLATION_CAT in COLUMNS_QUERY is the value of the COLLATION_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then COLLATION_CAT is set
to the null value.

w) The value of COLLATION _SCHEM in COLUMNS_QUERY is the value of the COLLA-
TION_SCHEMA column in the COLUMNS view.

x) The value of COLLATION_NAME in COLUMNS_QUERY is the value of the COLLATION_NAME
column in the COLUMNS view.

y) The value of UDT_CAT in COLUMNS_QUERY is the value of the USER_DEFINED_TYPE_CATA-
LOG column in the COLUMNS view. If SS does not support catalog names, then UDT_CAT is set to
the null value.

z) The value of UDT_SCHEM in COLUMNS_QUERY is the value of the
USER_DEFINED_TYPE_SCHEMA column in the COLUMNS view.

aa) The value of UDT_NAME in COLUMNS_QUERY is the value of the USER_DEFINED_TYPE_NAME
column in the COLUMNS view.

ab) The value of DOMAIN_CAT in COLUMNS_QUERY is the value of the DOMAIN_CATALOG column
in the COLUMNS view. If SS does not support catalog names, then DOMAIN_CAT is set to the null
value.

ac) The value of DOMAIN_SCHEM in COLUMNS_QUERY is the value of the DOMAIN_SCHEMA
column in the COLUMNS view.

ad) The value of DOMAIN_NAME in COLUMNS_QUERY is the value of the DOMAIN_NAME column
in the COLUMNS view.

ae) The value of SCOPE_CAT in COLUMNS_QUERY is the value of the SCOPE_CATALOG column
in the COLUMNS view. If SS does not support catalog names, then SCOPE_CAT is set to the null
value.

af) The value of SCOPE_SCHEM in COLUMNS_QUERY is the value of the SCOPE_SCHEMA column
in the COLUMNS view.

138 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.11 Columns

ag) The value of SCOPE_NAME in COLUMNS_QUERY is the value of the SCOPE_NAME column in
the COLUMNS view.

ah) The value of MAX_CARDINALITY in COLUMNS_QUERY is the value of the MAXIMUM_CAR-
DINALITY column in the COLUMNS view.

ai) The value of DTD_IDENTIFIER in COLUMNS_QUERY is the value of the DTD_IDENTIFIER
column in the COLUMNS view.

aj) The value of IS_SELF_REF in COLUMNS_QUERY is the value of the IS_SELF_REFERENCING
column in the COLUMNS view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and Name-
Length4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName, TableName,
and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, is 'Y', then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, or if TableName is a null pointer, or if ColumnName is a null pointer,
then an exception condition is raised: CLI-specific condition — invalid use of null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero. If ColumnName is a null pointer, then NL4
is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

SQL/CLI routines 139

CD 9075-3:200x(E)
6.11 Columns

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let COLVAL be the first L octets of ColumnName.

16) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH (TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

140 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.11 Columns

SUBSTRING (TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH (TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('COLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('COLVAL') FROM CHAR_LENGTH(TRIM('COLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('COLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('COLVAL')) - 2)

and let COLSTR be the character string:

COLUMN_NAME = 'TEMPSTR'

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER('COLVAL')

SQL/CLI routines 141

CD 9075-3:200x(E)
6.11 Columns

b) Otherwise:

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation informa-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that same
table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with the value
of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM LIKE 'SCHVAL' ESCAPE 'ESC' AND

NOTE 18 — The pattern value specified in the string to the right of LIKE may use the escape character that is indicated
by the value of the SEARCH PATTERN ESCAPE information type from Table 29, “Codes and data types for
implementation information”.

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME LIKE 'TBLVAL' ESCAPE 'ESC' AND

NOTE 19 — The pattern value specified in the string to the right of LIKE may use the escape character that is indicated
by the value of the SEARCH PATTERN ESCAPE information type from Table 29, “Codes and data types for
implementation information”.

vi) If the value of NL4 is zero, then let COLSTR be a zero-length string. Otherwise, let COLSTR be
the character string:

COLUMN_NAME = 'COLVAL' AND

17) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' ||
TBLSTR || ' ' || COLSTR || ' ' || 1=1

18) Let STMT be the character string:

SELECT *
FROM COLUMNS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

19) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

142 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.11 Columns

6.12 Connect

Function

Establish a connection.

Definition

Connect (
 ConnectionHandle IN INTEGER,
 ServerName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 UserName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 Authentication IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where:

— L1 has a maximum value of 128.

— L2 has a maximum value equal to the implementation-defined maximum length of a variable-length char-
acter string.

— L3 and has an implementation-defined maximum value.

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) If an SQL-transaction is active for the current SQL-connection and the implementation does not support
transactions that affect more than one SQL-server, then an exception condition is raised: feature not supported
— multiple server transactions.

3) If there is an established SQL-connection associated with C, then an exception condition is raised: connection
exception — connection name in use.

4) Case:

a) If ServerName is a null pointer, then let NL1 be zero.

b) Otherwise, let NL1 be the value of NameLength1.

SQL/CLI routines 143

CD 9075-3:200x(E)
6.12 Connect

5) Case:

a) If NL1 is not negative, then let L1 be NL1.

b) If NL1 indicates NULL TERMINATED, then let L1 be the number of octets of ServerName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

6) Case:

a) If L1 is zero, then let 'DEFAULT' be the value of SN.

b) If L1 is greater than 128, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

c) Otherwise, let SN be the first L1 octets of ServerName.

7) Let E be the allocated SQL-environment with which C is associated.

8) Case:

a) If UserName is a null pointer, then let NL2 be zero.

b) Otherwise, let NL2 be the value of NameLength2.

9) Case:

a) If NL2 is not negative, then let L2 be NL2.

b) If NL2 indicates NULL TERMINATED, then let L2 be the number of Octets of UserName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

10) Case:

a) If Authentication is a null pointer, then let NL3 be zero.

b) Otherwise, let NL3 be the value of NameLength3.

11) Case:

a) If NL3 is not negative, then let L3 be NL3.

b) If NL3 indicates NULL TERMINATED, then let L3 be the number of octets of Authentication that
precede the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

12) Case:

a) If the value of SN is 'DEFAULT', then:

i) If L2 is not zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

144 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.12 Connect

ii) If L3 is not zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

iii) If an established default SQL-connection is associated with an allocated SQL-connection asso-
ciated with E, then an exception condition is raised: connection exception — connection name
in use.

b) Otherwise:

i) If L2 is zero, then let UN be an implementation-defined <user identifier>.

ii) If L2 is non-zero, then:

1) Let UV be the first L2 octets of UserName and let UN be the result of

TRIM (BOTH ' ' FROM 'UV')

2) If UN does not conform to the Format and Syntax Rules of a <user identifier>, then an
exception condition is raised: invalid authorization specification.

3) If UN does not conform to any implementation-defined restrictions on its value, then an
exception condition is raised: invalid authorization specification.

iii) Case:

1) If L3 is not zero, then let AU be the first L3 octets of Authentication.

2) Otherwise, let AU be an implementation-defined authentication string, whose length may
be zero.

13) Case:

a) If the value of SN is 'DEFAULT', then the default SQL-session is initiated and associated with the
default SQL-server. The method by which the default SQL-server is determined is implementation-
defined.

b) Otherwise, an SQL-session is initiated and associated with the SQL-server identified by SN. The method
by which SN is used to determine the appropriate SQL-server is implementation-defined.

14) If an SQL-session is successfully initiated, then:

a) The current SQL-connection and current SQL-session, if any, become a dormant SQL-connection and
a dormant SQL-session respectively. The SQL-session context information is preserved and is not
affected in any way by operations performed over the initiated SQL-connection.

NOTE 20 — The SQL-session context information is defined in Subclause 4.37, “SQL-sessions”, in ISO/IEC 9075-2.

b) The initiated SQL-session becomes the current SQL-session and the SQL-connection established to
that SQL-session becomes the current SQL-connection and is associated with C.

NOTE 21 — If an SQL-session is not successfully initiated, then the current SQL-connection and current SQL-session, if
any, remain unchanged.

15) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised: connection
exception — SQL-client unable to establish SQL-connection.

16) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition is raised:
connection exception — SQL-server rejected establishment of SQL-connection.

SQL/CLI routines 145

CD 9075-3:200x(E)
6.12 Connect

NOTE 22 — AU and UN are used by the SQL-server, along with other implementation-dependent values, to determine whether
to accept or reject the establishment of an SQL-session.

17) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set to the
SQL-server identified by SN.

18) The SQL-session user identifier and the current user identifier are set to UN. The current role name is set
to the null value.

146 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.12 Connect

6.13 CopyDesc

Function

Copy a CLI descriptor.

Definition

CopyDesc (
 SourceDescHandle IN INTEGER,
 TargetDescHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If SourceDescHandle does not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition — invalid handle.

b) Otherwise, let SD be the CLI descriptor area identified by SourceDescHandle.

2) Case:

a) If TargetDescHandle does not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let TD be the CLI descriptor area identified by TargetDescHandle.

ii) The diagnostics area associated with TD is emptied.

3) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to SD as the DESCRIPTOR
AREA.

4) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to TD as the DESCRIPTOR
AREA.

5) If TD is an implementation row descriptor, then an exception condition is raised: CLI-specific condition
— cannot modify an implementation row descriptor.

6) Let AT be the value of the ALLOC_TYPE field of TD.

7) The contents of TD are replaced by a copy of the contents of SD.

8) The ALLOC_TYPE field of TD is set to AT.

SQL/CLI routines 147

CD 9075-3:200x(E)
6.13 CopyDesc

6.14 DataSources

Function

Get server name(s) that the SQL/CLI application can connect to, along with description information, if available.

Definition

DataSources (
 EnvironmentHandle IN INTEGER,
 Direction IN SMALLINT,
 ServerName OUT CHARACTER(L1),
 BufferLength1 IN SMALLINT,
 NameLength1 OUT SMALLINT,
 Description OUT CHARACTER(L2),
 BufferLength2 IN SMALLINT,
 NameLength2 OUT SMALLINT)

RETURNS SMALLINT

where L1 and L2 have maximum values equal to the implementation-defined maximum length of a variable-
length character string.

General Rules

1) Let EH be the value of EnvironmentHandle.

2) If EH does not identify an allocated SQL-environment or if it identifies an allocated skeleton SQL-environ-
ment, then an exception condition is raised: CLI-specific condition — invalid handle.

3) Let E be the allocated SQL-environment identified by EH. The diagnostics area associated with E is emptied.

4) Let BL1 and BL2 be the values of BufferLength1 and BufferLength2, respectively.

5) Let D be the value of Direction.

6) If D is not either the code value for NEXT or the code value for FIRST in Table 25, “Codes used for fetch
orientation”, then an exception condition is raised: CLI-specific condition — invalid retrieval code.

7) Let SN1, SN2, SN3, etc., be an ordered set of the names of SQL-servers to which the SQL/CLI application
might be eligible to connect (where the mechanism used to establish this set is implementation-defined).

NOTE 23 — SN1, SN2, SN3, etc., are the names that an SQL/CLI application would use in invocations of Connect, rather than the
“actual” names of the SQL-servers.

8) Let D1, D2, D3, etc., be strings describing the SQL-servers named by SN1, SN2, SN3, etc. (again provided
via an implementation-defined mechanism).

9) Case:

a) If D indicates FIRST, or if DataSources has never been successfully called on EH, or if the previous
call to DataSources on EH raised a completion condition: no data, then:

148 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.14 DataSources

If there are no entries in the set SN1, SN2, SN3, etc., then a completion condition is raised: no
data and no further rules for this Subclause are applied.

i)

ii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with ServerName,
SN1, BL1, and NameLength1 as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

iii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Description,
D1, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

b) Otherwise,

i) Let SNn be the ServerName value that was returned on the previous call to DataSources on EH.

ii) If there is no entry in the set after SNn, then a completion condition is raised: no data and no
further rules for this subclause are applied.

iii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with ServerName,
SNn+1, BL1, and NameLength1 as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

iv) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Description,
Dn+1, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 149

CD 9075-3:200x(E)
6.14 DataSources

6.15 DescribeCol

Function

Get column attributes.

Definition

DescribeCol (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 ColumnName OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT,
 DataType OUT SMALLINT,
 ColumnSize OUT INTEGER,
 DecimalDigits OUT SMALLINT,
 Nullable OUT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement not a cursor
specification.

5) Let CN be the value of ColumnNumber.

6) If CN is less than 1 (one) or greater than N, then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

7) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which LEVEL is
0 (zero). Let C be the <select list> column described by the item descriptor area of IRD specified by RI.

8) Let BL be the value of BufferLength.

9) Information is retrieved from IRD:

a) Case:

i) If the data type of C is datetime, then DataType is set to the value of the Code column from
Table 36, “Concise codes used with datetime data types in SQL/CLI”, corresponding to the
datetime interval code of C.

150 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.15 DescribeCol

ii) If the data type of C is interval, then DataType is set to the value of the Code column from
Table 37, “Concise codes used with interval data types in SQL/CLI”, corresponding to the
datetime interval code of C.

iii) Otherwise, DataType is set to the data type of C.

b) Case:

i) If the data type of C is character string, then ColumnSize is set to the maximum length in octets
of C.

ii) If the data type of C is exact numeric or approximate numeric, then ColumnSize is set to the
maximum length of C in decimal digits.

iii) If the data type of C is datetime or interval, then ColumnSize is set to the length in positions of
C.

iv) If the data type of C is a reference type, then ColumnSize is set to the length in octets of that
reference type.

v) Otherwise, ColumnSize is set to an implementation-dependent value.

c) Case:

i) If the data type of C is exact numeric, then DecimalDigits is set to the scale of C.

ii) If the data type of C is datetime, then DecimalDigits is set to the time fractional seconds precision
of C.

iii) If the data type of C is interval, then DecimalDigits is set to the interval fractional seconds pre-
cision of C.

iv) Otherwise, DecimalDigits is set to an implementation-dependent value.

d) If C can have the null value, then Nullable is set to 1 (one); otherwise, Nullable is set to 0 (zero).

e) The name associated with C is retrieved. If C has an implementation-dependent name, then the value
retrieved is the implementation-dependent name for C; otherwise, the value retrieved is the <derived
column> name of C. Let V be the value retrieved. The General Rules of Subclause 5.9, “Character
string retrieval”, are applied with ColumnName, V, BL, and NameLength as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

SQL/CLI routines 151

CD 9075-3:200x(E)
6.15 DescribeCol

6.16 Disconnect

Function

Terminate an established connection.

Definition

Disconnect (
 ConnectionHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) Let L1 be a list of the allocated SQL-statements associated with C. Let L2 be a list of the allocated CLI
descriptor areas associated with C.

4) If EC is active, then

Case:

a) If any allocated SQL-statement in L1 has a deferred parameter number associated with it, then an
exception condition is raised: CLI-specific condition — function sequence error.

b) Otherwise, an exception condition is raised: invalid transaction state — active SQL-transaction.

5) For every allocated SQL-statement AS in L1:

a) Let SH be the StatementHandle that identifies AS.

b) FreeHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE and with SH
as the value of Handle.

NOTE 24 — Any diagnostic information generated by the invocation is associated with C and not with AS.

6) For every allocated CLI descriptor area AD in L2:

152 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.16 Disconnect

Let DH be the DescriptorHandle that identifies AD.a)

b) FreeHandle is implicitly invoked with HandleType indicating DESCRIPTOR HANDLE and with DH
as the value of Handle.

NOTE 25 — Any diagnostic information generated by the invocation is associated with C and not with AD.

7) Let CC be the current SQL-connection.

8) The SQL-session associated with EC is terminated. EC is terminated, regardless of any exception conditions
that might occur during the disconnection process, and is no longer associated with C.

9) If any error is detected during the disconnection process, then a completion condition is raised: warning
— disconnect error.

10) If EC and CC were the same SQL-connection, then there is no current SQL-connection. Otherwise, CC
remains the current SQL-connection.

SQL/CLI routines 153

CD 9075-3:200x(E)
6.16 Disconnect

6.17 EndTran

Function

Terminate an SQL-transaction.

Definition

EndTran (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 CompletionType IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates STATEMENT HANDLE, then

Case:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.

b) If HT indicates DESCRIPTOR HANDLE, then

Case:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.

c) If HT indicates CONNECTION HANDLE, then

Case:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

154 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.17 EndTran

3) If C has an associated established SQL-connection that is active, then let L1 be a list contain-
ing C; otherwise, let L1 be an empty list.

d) If HT indicates ENVIRONMENT HANDLE, then

Case:

i) If H does not identify an allocated SQL-environment or if it identifies an allocated SQL-envi-
ronment that is a skeleton SQL-environment, then an exception condition is raised: CLI-specific
condition — invalid handle.

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list of the
allocated SQL-connections in L that have an associated established SQL-connection that is
active.

4) Let CT be the value of CompletionType.

5) If CT is not one of the code values in Table 15, “Codes used for transaction termination”, then an exception
condition is raised: CLI-specific condition — invalid transaction operation code.

6) If L1 is empty, then no further rules of this Subclause are applied.

7) If the current SQL-transaction is part of an encompassing transaction that is controlled by an agent other
than the SQL-agent, then an exception condition is raised: invalid transaction termination.

8) Let L2 be a list of the allocated SQL-statements associated with allocated SQL-connections in L1.

9) If any of the allocated SQL-statements in L2 has an associated deferred parameter number, then an exception
condition is raised: CLI-specific condition — function sequence error.

10) Let L3 be a list of the open cursors associated with allocated SQL-statements in L2.

11) If CT indicates COMMIT, COMMIT AND CHAIN, ROLLBACK, or ROLLBACK AND CHAIN, then:

a) Case:

i) If CT indicates COMMIT or COMMIT AND CHAIN), then let LOC be the list of all non-
holdable cursors in L3.

ii) Otherwise, let LOC be the list of all cursors in L3.

b) For OC ranging over all cursors in LOC:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) OC is placed in the closed state and its copy of the select source is destroyed.

iii) Any fetched row associated with S is removed from association with S.

12) If CT indicates COMMIT or COMMIT AND CHAIN, then:

a) If an atomic execution context is active, then an exception condition is raised: invalid transaction ter-
mination.

SQL/CLI routines 155

CD 9075-3:200x(E)
6.17 EndTran

b) For every temporary table associated with the current SQL-transaction that specifies the ON COMMIT
DELETE option and that was updated by the current SQL-transaction, the invocation of EndTran with
CT indicating COMMIT is effectively preceded by the execution of a <delete statement: searched>
that specifies DELETE FROM T, where T is the <table name> of that temporary table.

c) The effects specified in the General Rules of Subclause 17.4, “<set constraints mode statement>”, in
ISO/IEC 9075-2, occur as if the statement SET CONSTRAINTS ALL IMMEDIATE were executed.

d) Case:

i) If any constraint is not satisfied, then any changes to SQL-data or schemas that were made by
the current SQL-transaction are canceled and an exception condition is raised: transaction rollback
— integrity constraint violation.

ii) If the execution of any <triggered SQL statement> is unsuccessful, then all changes to SQL-
data or schemas that were made by the current SQL-transaction are cancelled and an exception
condition is raised: transaction rollback — triggered action exception.

iii) If any other error preventing commitment of the SQL-transaction has occurred, then any changes
to SQL-data or schemas that were made by the current SQL-transaction are canceled and an
exception condition is raised: transaction rollback with an implementation-defined subclass
value.

iv) Otherwise, any changes to SQL-data or schemas that were made by the current SQL-transaction
are made accessible to all concurrent and subsequent SQL-transactions.

e) Every savepoint established in the current SQL-transaction is destroyed.

f) Every valid non-holdable locator value is marked invalid.

g) The current SQL-transaction is terminated. If CT indicates COMMIT AND CHAIN, then a new SQL-
transaction is initiated with the same access mode and isolation level as the SQL-transaction just termi-
nated. Any branch transactions of the SQL-transaction are initiated with the same access mode and
isolation level as the corresponding branch of the SQL-transaction just terminated.

13) If CT indicates SAVEPOINT NAME RELEASE, then:

a) If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-specific condition
— invalid handle.

b) Let SP be the value of the SAVEPOINT NAME connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an exception
condition is raised: savepoint exception — invalid specification.

d) The savepoint identified by SP and all savepoints established by the current SQL-transaction subsequent
to the establishment of SP are destroyed.

14) If CT indicates ROLLBACK or ROLLBACK AND CHAIN, then:

a) If an atomic execution context is active, then an exception condition is raised: invalid transaction ter-
mination.

b) All changes to SQL-data or schemas that were made by the current SQL-transaction are canceled.

c) Every savepoint established in the current SQL-transaction is destroyed.

d) Every valid locator value is marked invalid.

156 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.17 EndTran

e) The current SQL-transaction is terminated. If CT indicates ROLLBACK AND CHAIN, then a new
SQL-transaction is initiated with the same access mode and isolation level as the SQL-transaction just
terminated. Any branch transactions of the SQL-transaction are initiated with the same access mode
and isolation level as the corresonding branch of the SQL-transaction just terminated.

15) If CT indicates SAVEPOINT NAME ROLLBACK, then:

a) If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-specific condition
— invalid handle.

b) Let SP be the value of the SAVEPOINT NAME connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an exception
condition is raised: savepoint exception — invalid specification.

d) If an atomic execution context is active and SP specifies a savepoint established before the beginning
of the most recent atomic execution context, then an exception condition is raised: savepoint exception
— invalid specification.

e) Any changes to SQL-data or schemas that were made by the current SQL-transaction subsequent to
the establishment of SP are canceled.

f) All savepoints established by the current SQL-transaction subsequent to the establishment of SP are
destroyed.

g) Every valid locator that was generated in the current SQL-transaction subsequent to the establishment
of SP is marked invalid.

h) For every open cursor OC in L3 that was opened subsequent to the establishment of SP:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) OC is placed in the closed state and its copy of the select source is destroyed.

iii) Any fetched row associated with OC is removed from association with S.

i) The status of any open cursors in L3 that were opened by the current SQL-transaction before the
establishment of SP is implementation-defined.

NOTE 26 — The current SQL-transaction is not terminated, and there is no other effect on the SQL-data or schemas.

SQL/CLI routines 157

CD 9075-3:200x(E)
6.17 EndTran

6.18 Error

Function

Return diagnostic information.

Definition

Error (
 EnvironmentHandle IN INTEGER,
 ConnectionHandle IN INTEGER,
 StatementHandle IN INTEGER,
 Sqlstate OUT CHARACTER(5),
 NativeError OUT INTEGER,
 MessageText OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 TextLength OUT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Case:

a) If StatementHandle identifies an allocated SQL-statement, then let IH be the value of StatementHandle
and let HT be the code value for STATEMENT HANDLE from Table 14, “Codes used for SQL/CLI
handle types”.

b) If StatementHandle is zero and ConnectionHandle identifies an allocated SQL-connection, then let IH
be the value of ConnectionHandle and let HT be the code value for CONNECTION HANDLE from
Table 14, “Codes used for SQL/CLI handle types”.

c) If ConnectionHandle is zero and EnvironmentHandle identifies an allocated SQL-environment, then
let IH be the value of EnvironmentHandle and let HT be the code value for ENVIRONMENT HANDLE
from Table 14, “Codes used for SQL/CLI handle types”.

d) Otherwise, an exception condition is raised: CLI-specific condition — invalid handle.

2) Let R be the most recently executed CLI routine, other than Error, GetDiagField, or GetDiagRec, for which
IH was passed as a value of an input handle.

NOTE 27 — The GetDiagField, GetDiagRec and Error routines may cause exception or completion conditions to be raised, but
they do not cause status records to be generated.

3) Let N be the number of status records generated by the execution of R. Let AP be the number of status
records generated by the execution of R already processed by Error. If N is zero or AP equals N then a
completion condition is raised: no data, Sqlstate is set to '00000', the values of NativeError, MessageText,
and TextLength are set to implementation-dependent values, and no further rules of this Subclause are
applied.

158 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.18 Error

4) Let SR be the first status record generated by the execution of R not yet processed by Error. Let RN be the
number of the status record SR. Information is retrieved by implicitly executing GetDiagRec as follows:

 GetDiagRec (HT, IH, RN, Sqlstate,
 NativeError, MessageText, BufferLength, TextLength)

5) Add SR to the list of status records generated by the execution of R already processed by Error.

SQL/CLI routines 159

CD 9075-3:200x(E)
6.18 Error

6.19 ExecDirect

Function

Execute a statement directly.

Definition

ExecDirect (
 StatementHandle IN INTEGER,
 StatementText IN CHARACTER(L),
 TextLength IN INTEGER)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let TL be the value of TextLength.

4) Case:

a) If TL is not negative, then let L be TL.

b) If TL indicates NULL TERMINATED, then let L be the number of octets of StatementText that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

b) Otherwise, let P be the first L octets of StatementText.

6) If P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update statement:
positioned>, then let CN be the cursor name referenced by P. Let C be the allocated SQL-connection with
which S is associated. If CN is not the name of a cursor associated with another allocated SQL-statement
associated with C, then an exception condition is raised: invalid cursor name.

7) If one or more of the following are true, then an exception condition is raised: syntax error or access rule
violation.

a) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable statement> or P is
a <start transaction statement>, a <commit statement>, a <rollback statement>, or a <release savepoint
statement>.

160 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.19 ExecDirect

NOTE 28 — See Table 32, “SQL-statement codes”, in ISO/IEC 9075-2 for the list of <preparable statement>s. Other parts
of ISO/IEC 9075 may have corresponding tables that define additional codes representing statements defined by those parts
of ISO/IEC 9075.

b) P contains a <simple comment>.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined by the
rules specified in Subclause 20.6, “<prepare statement>”, in ISO/IEC 9075-2.

8) The data type of any <dynamic parameter specification> contained in P is determined by the rules specified
in Subclause 20.6, “<prepare statement>”, in ISO/IEC 9075-2.

9) Let DTGN be the default transform group name and TFL be the list of user-defined type name—transform
group name pairs used to identify the group of transform functions for every user-defined type that is ref-
erenced in P. DTGN and TFL are not affected by the execution of a <set transform group statement> after
P is prepared.

10) The following objects associated with S are destroyed:

a) Any prepared statement.

b) Any cursor.

c) Any select source.

If a cursor associated with S is destroyed, then so are any prepared statements that reference that cursor.

11) P is prepared.

12) Case:

a) If P is a <dynamic select statement> or a <dynamic single row select statement>, then:

i) P becomes the select source associated with S.

ii) If there is no cursor name associated with S, then a unique implementation-dependent name that
has the prefix 'SQLCUR' or the prefix 'SQL_CUR' becomes the cursor name associated with S.

iii) The General Rules of Subclause 5.5, “Implicit DESCRIBE USING clause”, are applied to P
and S, as SOURCE and ALLOCATED STATEMENT, respectively.

iv) The General Rules of Subclause 5.4, “Implicit cursor”, are applied to P and S as SELECT
SOURCE and ALLOCATED STATEMENT, respectively.

b) Otherwise:

i) The General Rules of Subclause 5.5, “Implicit DESCRIBE USING clause”, are applied to P
and S, as SOURCE and ALLOCATED STATEMENT, respectively.

ii) The General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”,
are applied to 'EXECUTE', P, and S, as TYPE, SOURCE, and ALLOCATED STATEMENT,
respectively.

iii) Case:

1) If P is a <preparable dynamic delete statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated with CR.

SQL/CLI routines 161

CD 9075-3:200x(E)
6.19 ExecDirect

B) All the General Rules in Subclause 20.22, “<preparable dynamic delete statement:
positioned>”, in ISO/IEC 9075-2 apply to P. For the purposes of the application of these
Rules, the row in CR identified by SCR's CURRENT OF POSITION statement attribute
is the current row of CR.

C) If the execution of P deleted the current row of CR, then the effect on the fetched row,
if any, associated with the allocated SQL-statement under which that current row was
established, is implementation-defined.

2) If P is a <preparable dynamic update statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated with CR.

B) All the General Rules in Subclause 20.24, “<preparable dynamic update statement:
positioned>”, in ISO/IEC 9075-2 apply to P. For the purposes of the application of these
Rules, the row in CR identified by SCR's CURRENT OF POSITION statement attribute
is the current row of CR.

C) If the execution of P updated the current row of CR, then the effect on the fetched row,
if any, associated with the allocated SQL-statement under which that current row was
established, is implementation-defined.

3) Otherwise, the results of the execution are the same as if the statement were contained in
an <externally-invoked procedure> and executed; these are described in Subclause 13.3,
“<externally-invoked procedure>”, in ISO/IEC 9075-2.

iv) If P is a <call statement>, then the General Rules of Subclause 5.7, “Implicit CALL USING
clause”, are applied to P and S, as SOURCE and ALLOCATED STATEMENT, respectively.

13) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

14) R becomes the row count associated with S.

15) If P executed successfully, then any executed statement associated with S is destroyed and P becomes the
executed statement associated with S.

162 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.19 ExecDirect

6.20 Execute

Function

Execute a prepared statement.

Definition

Execute (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error. Otherwise, let P be the statement that was prepared.

3) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

4) P is executed.

5) Case:

a) If P is a <dynamic select statement> or a <dynamic single row select statement>, then the General
Rules of Subclause 5.4, “Implicit cursor”, are applied to P and S as SELECT SOURCE and ALLOCATED
STATEMENT, respectively.

b) Otherwise:

i) The General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”,
are applied with EXECUTE as TYPE, P as SOURCE, and S as ALLOCATED STATEMENT.

ii) Case:

1) If P is a <preparable dynamic delete statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated with CR.

B) All the General Rules in Subclause 20.22, “<preparable dynamic delete statement:
positioned>”, in ISO/IEC 9075-2 apply to P. For the purposes of the application of these
Rules, the row in CR identified by SCR's CURRENT OF POSITION statement attribute
is the current row of CR.

C) If the execution of P deleted the current row of CR, then the effect on the fetched row,
if any, associated with the allocated SQL-statement under which that current row was
established, is implementation-defined.

2) If P is a <preparable dynamic update statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the statement associated with CR.

SQL/CLI routines 163

CD 9075-3:200x(E)
6.20 Execute

B) All the General Rules in Subclause 20.24, “<preparable dynamic update statement:
positioned>”, in ISO/IEC 9075-2 apply to P. For the purposes of the application of these
Rules, the row in CR identified by SCR's CURRENT OF POSITION statement attribute
is the current row of CR.

C) If the execution of P updated the current row of CR, then the effect on the fetched row,
if any, associated with the allocated SQL-statement under which that current row was
established, is implementation-defined.

3) Otherwise, the results of the execution are the same as if the statement were contained in
an <externally-invoked procedure> and executed; these are described in Subclause 13.3,
“<externally-invoked procedure>”, in ISO/IEC 9075-2.

iii) If P is a <call statement>, then the General Rules of Subclause 5.7, “Implicit CALL USING
clause”, are applied to P and S, as SOURCE and ALLOCATED STATEMENT, respectively.

6) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

7) R becomes the row count associated with S.

8) If P executed successfully, then any executed statement associated with S is destroyed and P becomes the
executed statement associated with S.

164 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.20 Execute

6.21 Fetch

Function

Fetch the next row of a cursor.

Definition

Fetch (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

3) If there is no open cursor associated with S, then an exception condition is raised: invalid cursor state.
Otherwise, let CR be the open cursor associated with S and let T be the table associated with the open cursor.

4) Let ARD be the current application row descriptor for S and let N be the value of the TOP_LEVEL_COUNT
field of ARD.

5) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor areas of
ARD, and for all of their subordinate descriptor areas, refer to a <target specification> whose corresponding
item descriptor area has a non-zero value of DATA_POINTER as a bound target and refer to the corre-
sponding <select list> column as a bound column.

6) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT be the value
of the TYPE field of IDA.

7) If TT indicates DEFAULT, then:

a) Let IRD be the implementation row descriptor associated with S.

b) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
item descriptor area of IRD corresponding to the i-th bound column.

c) The data type, precision, and scale of the <target specification> described by IDA are effectively set
to CT, P, and SC, respectively, for the purposes of this Fetch invocation only.

8) Let R be the rowset on which CR is positioned and let AS be the value of the ARRAY_SIZE field in the
header of the ARD for S.

9) If T is empty, or if R contains the last row of T, or if CR is positioned after the end of the result set, then:

a) CR is positioned after the last row of T. An empty rowset becomes the fetched rowset associated with
CR.

b) No database values are assigned to bound targets.

SQL/CLI routines 165

CD 9075-3:200x(E)
6.21 Fetch

c) A completion condition is raised: no data and no further rules of this Subclause are applied.

10) Case:

a) If the position of CR is before the start of T, then

Case:

i) If the number of rows in T is less than or equal to AS, then CR is positioned on the rowset that
has all the rows in T.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows of T.

b) Otherwise, let Tt be the table that contains all the rows of T that immediately follow the last row of R,
preserving their order in T.

Case:

i) If the number of rows in Tt is less than or equal to AS, then CR is positioned on the rowset that
has all the rows in Tt.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows of Tt.

11) Let NR be the rowset on which CR is positioned. Let ASP and RPP be the values of the ARRAY_STA-
TUS_POINTER and ROWS_PROCESSED_POINTER fields, respectively, in the header of the IRD of S.

12) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to zero.

13) Let RS be the number of rows in NR. For RN ranging from 1 (one) to RS:

a) Let RNR be the RN-th row of NR. Let ROWS_PROCESSED be 0 (zero).

Case:

i) If an exception condition is raised during derivation of any <derived column> associated with
RNR and ASP is not a null pointer, then set the RN-th element of ASP to 5 (indicating Row
error). For all status records that result from the application of this rule, the ROW_NUMBER
field is set to RN and the COLUMN_NUMBER field is set to the appropriate column number,
if any.

ii) Otherwise, the row RNR is fetched and ROWS_PROCESSED is incremented by 1 (one).

14) Case:

a) If ROWS_PROCESSED is greater than 0 (zero), then:

i) Let SS be the select source associated with S.

ii) NR becomes the fetched rowset associated with S.

iii) Set ROWS_PROCESSED to 0 (zero).

iv) The General Rules of Subclause 5.8, “Implicit FETCH USING clause”, are applied with SS, RS,
ROWS_PROCESSED, and S as SOURCE, ROWS, ROWS PROCESSED, and ALLOCATED
STATEMENT, respectively.

Case:

166 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.21 Fetch

1) If ROWS_PROCESSED is greater than 0 (zero), RN is less than AS, and ASP is not a null
pointer, then the RN+1-th through AS-th elements of ASP are set to 3 (indicating No row).
If ROWS_PROCESSED is less than RN, then a completion condition is raised: warning. If
RPP is not a null pointer, then the value of the host variable addressed by RPP is set to the
value of ROWS_PROCESSED.

2) If ROWS_PROCESSED is 0 (zero), then the values of all bound targets are implementation-
dependent, and CR remains positioned on NR.

b) Otherwise, the values of all bound targets are implementation-dependent and CR remains positioned
on NR.

SQL/CLI routines 167

CD 9075-3:200x(E)
6.21 Fetch

6.22 FetchScroll

Function

Position a cursor on the specified row and retrieve values from that row.

Definition

FetchScroll (
 StatementHandle IN INTEGER,
 FetchOrientation IN SMALLINT,
 FetchOffset IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

3) If there is no open cursor associated with S, then an exception condition is raised: invalid cursor state;
otherwise, let CR be the open cursor associated with S and let T be the table associated with the open cursor.

4) If FetchOrientation is not one of the code values in Table 25, “Codes used for fetch orientation”, then an
exception condition is raised: CLI-specific condition — invalid fetch orientation.

5) Let FO be the value of FetchOrientation.

6) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, and FO does not
indicate NEXT, then an exception condition is raised: CLI-specific condition — invalid fetch orientation.

7) Let ARD be the current application row descriptor for S and let N be the value of the TOP_LEVEL_COUNT
field of ARD.

8) For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor areas of
ARD, and for all of their subordinate descriptor areas, refer to a <target specification> whose corresponding
item descriptor area has a non-zero value of DATA_POINTER as a bound target and refer to the corre-
sponding <select list> column as a bound column.

9) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT be the value
of the TYPE field of IDA.

10) If TT indicates DEFAULT, then:

a) Let IRD be the implementation row descriptor associated with S.

b) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
item descriptor area of IRD corresponding to the i-th bound column.

c) The data type, precision, and scale of the <target specification> described by IDA are effectively set
to CT, P, and SC, respectively, for the purposes of this fetch only.

168 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.22 FetchScroll

11) Case:

a) If FO indicates ABSOLUTE or RELATIVE, then let J be the value of FetchOffset.

b) If FO indicates NEXT or FIRST, then let J be +1.

c) If FO indicates PRIOR or LAST, then let J be –1.

12) Let R be the rowset on which CR is positioned and let AS be the value of the ARRAY_SIZE field in the
header of the ARD for S.

13) Let Tt be a table of the same degree as T.

Case:

a) If FO indicates ABSOLUTE, FIRST, or LAST, then let Tt contain all rows of T, preserving their order
in T.

b) If FO indicates NEXT or indicates RELATIVE with a positive value of J, then

Case:

i) If the table T identified by cursor CR is empty or if R contains the last row of T, then let Tt be a
table of no rows.

ii) If CR is positioned before the start of the result set, then let Tt contain all rows of T, preserving
their order in T.

iii) Otherwise, let Tt contain all rows of T after the first row of R, preserving their order in T.

c) If FO indicates PRIOR or indicates RELATIVE with a negative value of J, then

Case:

i) If the table T identified by cursor CR is empty or if R contains the first row of T, then let Tt be
a table of no rows.

ii) If CR is positioned after the end of the result set, then let Tt contain all rows of T, preserving
their order in T.

iii) Otherwise, let Tt contain all rows of T before the first row of R, preserving their order in T.

d) If FO indicates RELATIVE with a zero value of J, then

Case:

i) If R is not empty, then let Tt be a table comprising all the rows in R, preserving their order in R.

ii) Otherwise, let Tt be an empty table.

14) Let N be the number of rows in Tt. If J is positive, then let K be J. If J is negative, then let K be N+J+1. If
J is zero, then let K be 1 (one).

15) Case:

a) If K is greater than 0 (zero), then

Case:

SQL/CLI routines 169

CD 9075-3:200x(E)
6.22 FetchScroll

i) If (K + AS - 1) is greater than N, then

Case:

Case:

1) If J is less than 0 (zero), then

Case:

A) If (K + AS - 1) is greater than the number of rows in T, then CR is positioned on the
rowset that has all the rows in T.

B) Otherwise, CR is positioned on the rowset whose first row is the K-th row of T; that
rowset has AS rows.

2) Otherwise, if K is less than N, then CR is positioned on the rowset that has all the rows in
Tt.

ii) Otherwise, CR is positioned on the rowset whose first row is the K-th row of Tt; that rowset has
AS rows.

b) If K is less than 0 (zero), but the absolute value of K is less than or equal to AS, then

Case:

i) If AS is greater than the number of rows in T, then CR is positioned on the rowset that has all
the rows in T.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows in T.

c) Otherwise, no SQL-data values are assigned and a completion condition is raised: no data.

Case:

i) If FO indicates RELATIVE with J equal to zero, then the position of CR is unchanged.

ii) If FO indicates NEXT, indicates ABSOLUTE or RELATIVE with K greater than N, or indicates
LAST, then CR is positioned after the last row.

iii) Otherwise, FO indicates PRIOR, FIRST, or ABSOLUTE or RELATIVE with K not greater than
N and CR is positioned before the first row.

No further rules of this Subclause are applied.

16) Let NR be the rowset on which CR is positioned. Let ASP and RPP be the values of the ARRAY_STA-
TUS_POINTER and ROWS_PROCESSED_POINTER fields respectively in the header of the IRD of S.

17) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to 0 (zero).

18) Let RS be the number of rows in NR. For RN ranging from 1 (one) to RS:

a) Let R be the RN-th row of NR. Let ROWS_PROCESSED be 0 (zero).

Case:

i) If an exception condition is raised during derivation of any <derived column> associated with
R and ASP is not a null pointer, then set the RN-th element of ASP to 5 (indicating Row error).

170 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.22 FetchScroll

For all status records that result from the application of this Rule, the ROW_NUMBER field is
set to RN and the COLUMN_NUMBER field is set to the appropriate column number, if any.

ii) Otherwise the row R is fetched and ROWS_PROCESSED is incremented by 1 (one).

19) Case:

a) If ROWS_PROCESSED is greater than 0 (zero), then:

i) Let SS be the select source associated with S.

ii) NR becomes the fetched rowset associated with S.

iii) Set ROWS_PROCESSED to 0 (zero).

iv) The general rules of Subclause 5.8, “Implicit FETCH USING clause”, are applied with SS, RS,
ROWS_PROCESSED, and S as SOURCE, ROWS, ROWS PROCESSED, and ALLOCATED
STATEMENT, respectively.

Case:

1) If ROWS_PROCESSED is greater than 0 (zero), RN is less than AS, and ASP is not 0 (zero),
then set the RN+1-th through AS-th elements of ASP to 3 (indicating No row). If
ROWS_PROCESSED is less than RN, then a completion condition is raised: warning. If
RPP is not a null pointer, then the value of the host variable addressed by RPP is set to the
value of ROWS_PROCESSED.

2) If ROWS_PROCESSED is 0 (zero), then the values of all bound targets are implementation-
dependent and CR remains positioned on NR.

b) Otherwise, the values of all bound targets are implementation-dependent and CR remains positioned
on R.

SQL/CLI routines 171

CD 9075-3:200x(E)
6.22 FetchScroll

6.23 ForeignKeys

Function

Return a result set that contains information about foreign keys either in or referencing a single specified table
stored in the Information Schema of the connected data source. The result set contains information about either:

— The primary key of a single specified table together with the foreign keys in all other tables that reference
that primary key.

— The foreign keys of a single specified table together with the primary or unique keys to which they refer.

Definition

ForeignKeys (
 StatementHandle IN INTEGER,
 PKCatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 PKSchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 PKTableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 FKCatalogName IN CHARACTER(L4),
 NameLength4 IN SMALLINT,
 FKSchemaName IN CHARACTER(L5),
 NameLength5 IN SMALLINT,
 FKTableName IN CHARACTER(L6),
 NameLength6 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, L4, L5, and L6 has a maximum value equal to the implementation-defined maximum
length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let FOREIGN_KEYS_QUERY be a table, with the definition:

CREATE TABLE FOREIGN_KEYS_QUERY (
 UK_TABLE_CAT CHARACTER VARYING(128),
 UK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
 UK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
 UK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
 FK_TABLE_CAT CHARACTER VARYING(128),
 FK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
 FK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,

172 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

 FK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
 ORDINAL_POSITION SMALLINT NOT NULL,
 UPDATE_RULE SMALLINT,
 DELETE_RULE SMALLINT,
 FK_NAME CHARACTER VARYING(128),
 UK_NAME CHARACTER VARYING(128),
 DEFERABILITY SMALLINT,
 UNIQUE_OR_PRIMARY CHARACTER(7))

6) Let PKN and FKN be the value of PKTableName and FKTableName, respectively.

7) Case:

a) If CHAR_LENGTH(PKN) = 0 (zero) and CHAR_LENGTH(FKN) ≠ 0 (zero), then the result set returned
describes all the foreign keys (if any) of the specified table, and describes the primary or unique keys
to which they refer.

i) Let FKS represent the set of rows formed by a natural inner join on the values in the CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns
between the rows in SS's Information Schema REFERENTIAL_CONSTRAINTS view and the
matching rows in SS's Information Schema TABLE_CONSTRAINTS view.

ii) Let UK represent the row in SS's Information Schema TABLE_CONSTRAINTS view that
defines the primary or unique key referenced by an individual foreign key in FKS. This row is
obtained by matching the values in the UNIQUE_CONSTRAINT_CATALOG,
UNIQUE_CONSTRAINT_SCHEMA, and UNIQUE_CONSTRAINT_NAME columns in a
row of FKS to the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and
CONSTRAINT_NAME columns in TABLE_CONSTRAINTS.

iii) Let FK_COLS represent the set of rows in SS's Information Schema KEY_COLUMN_USAGE
view that define the columns within an individual foreign key row in FKS.

iv) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

v) Let UK_COLS represent the set of rows in SS's Information Schema KEY_COLUMN_USAGE
view that define the columns within an individual UK.

vi) Let UKS_COLS represent the set of rows in the combination of all UK_COLS sets.

vii) Let XKS_COLS represent the set of extended rows formed by the inner equijoin of FKS_COLS
and UKS_COLS matching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, and POSITION_IN_UNIQUE_CONSTRAINT in FKS_COLS with CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and ORDI-
NAL_POSITION in UKS_COLS, respectively.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from FKS_COLS are respectively 'F_' ||
FKS_COLS_NAME.

Let UKS_COLS_NAME be the name of each column of UKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from UKS_COLS are respectively 'U_' ||
UKS_COLS_NAME.

viii) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLS where:

SQL/CLI routines 173

CD 9075-3:200x(E)
6.23 ForeignKeys

Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information
Schema metadata constrained by privileges”).

1)

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains a row for each
column of all the foreign keys within a specific table in SS's Information Schema
TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each column of all the foreign
keys within a specific table in SS's Information Schema TABLE_CONSTRAINTS view
in accordance with implementation-defined authorization criteria.

ix) For each row of FOREIGN_KEYS_QUERY:

1) If the implementation does not support catalog names, then UK_TABLE_CAT is set to the
null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_QUERY is the
value of the U_TABLE_CATALOG column in XKS_COLS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_SCHEMA column in XKS_COLS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_NAME column in XKS_COLS.

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
U_COLUMN_NAME column in XKS_COLS.

5) If the implementation does not support catalog names, then UK_TABLE_CAT is set to the
null value; otherwise, the value of FK_TABLE_CAT in FOREIGN_KEYS_QUERY is the
value of the F_TABLE_CATALOG column in XKS_COLS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS_COLS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS_COLS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS_COLS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
F_ORDINAL_POSITION column in XKS_COLS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the value of
the UPDATE_RULE column in XKS_COLS as follows:

A) Let UR be the value in the UPDATE_RULE column.

B) If UR is 'CASCADE', then the value of UPDATE_RULE is the code for CASCADE in
Table 27, “Miscellaneous codes used in CLI”.

C) If UR is 'RESTRICT', then the value of UPDATE_RULE is the code for RESTRICT
in Table 27, “Miscellaneous codes used in CLI”.

174 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

D) If UR is 'SET NULL', then the value of UPDATE_RULE is the code for SET NULL in
Table 27, “Miscellaneous codes used in CLI”.

E) If UR is 'NO ACTION', then the value of UPDATE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes used in CLI”.

F) If UR is 'SET DEFAULT', then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 27, “Miscellaneous codes used in CLI”.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the value of
the DELETE_RULE column in XKS_COLS as follows:

A) Let DR be the value in the DELETE_RULE column.

B) If DR is 'CASCADE', then the value of DELETE_RULE is the code for CASCADE in
Table 27, “Miscellaneous codes used in CLI”.

C) If DR is 'RESTRICT', then the value of DELETE_RULE is the code for RESTRICT in
Table 27, “Miscellaneous codes used in CLI”.

D) If DR is 'SET NULL', then the value of DELETE_RULE is the code for SET NULL in
Table 27, “Miscellaneous codes used in CLI”.

E) If DR is 'NO ACTION', then the value of DELETE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes used in CLI”.

F) If DR is 'SET DEFAULT', then the value of DELETE_RULE is the code for SET
DEFAULT in Table 27, “Miscellaneous codes used in CLI”.

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CON-
STRAINT_NAME column in XKS_COLS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the
UNIQUE_CONSTRAINT_NAME column in XKS_COLS.

14) If there are no implementation-defined mechanisms for setting the value of DEFERABILITY
in FOREIGN_KEYS_QUERY to the value of the code for INITIALLY DEFERRED or to
the value of the code for INITIALLY IMMEDIATE in Table 27, “Miscellaneous codes
used in CLI”, then the value of DEFERABILITY in FOREIGN_KEYS_QUERY is the code
for NOT DEFERRABLE in Table 27, “Miscellaneous codes used in CLI”; otherwise, the
value of DEFERABILITY in FOREIGN_KEYS_QUERY can be the code for INITIALLY
DEFERRED, the value of the code for INITIALLY IMMEDIATE, or the code for NOT
DEFERRABLE in Table 27, “Miscellaneous codes used in CLI”.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is 'UNIQUE' if the
foreign key references a UNIQUE key and 'PRIMARY' if the foreign key references a primary
key.

x) Let NL1, NL2, and NL3 be the values of NameLength4, NameLength5, and NameLength6,
respectively.

xi) Let CATVAL, SCHVAL, and TBLVAL be the values of FKCatalogName, FKSchemaName, and
FKTableName, respectively.

xii) If the METADATA ID attribute of S is TRUE, then:

SQL/CLI routines 175

CD 9075-3:200x(E)
6.23 ForeignKeys

If FKCatalogName is a null pointer and the value of the CATALOG NAME information
type from Table 29, “Codes and data types for implementation information”, Y, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

1)

2) If FKSchemaName is a null pointer or if FKTableName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

xiii) If FKCatalogName is a null pointer, then NL1 is set to zero. If FKSchemaName is a null pointer,
then NL2 is set to zero. If FKTableName is a null pointer, then NL3 is set to zero.

xiv) Case:

1) If NL1 is not negative, then let L be NL1.

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of FKCatalog-
Name that precede the implementation-defined null character that terminates a C character
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of FKCatalogName.

xv) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of FKSchem-
aName that precede the implementation-defined null character that terminates a C character
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of FKSchemaName.

xvi) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of FKTableName
that precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of FKTableName.

xvii) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

176 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

1) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('CATVAL') FROM
CHAR_LENGTH(TRIM('CATVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = 'TEMPSTR' AND

2) Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER('CATVAL') AND

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('SCHVAL') FROM
CHAR_LENGTH(TRIM('SCHVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = 'TEMPSTR' AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER('SCHVAL') AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('TBLVAL') FROM
CHAR_LENGTH(TRIM('TBLVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

SQL/CLI routines 177

CD 9075-3:200x(E)
6.23 ForeignKeys

and let TBLSTR be the character string:

FK_TABLE_NAME = 'TEMPSTR' AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER('TBLVAL') AND

2) Otherwise:

A) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

FK_TABLE_CAT = 'CATVAL' AND

B) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

FK_TABLE_SCHEM = 'SCHVAL' AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

FK_TABLE_NAME = 'TBLVAL' AND

xviii) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

xix) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xx) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

b) If CHAR_LENGTH(PKN) ≠ 0 (zero) and CHAR_LENGTH(FKN) = 0 (zero), then the result set returned
contains a description of the primary key (if any) of the specified table together with the descriptions
of foreign keys in all other tables that reference that primary key.

i) Let PKS represent the set of rows in SS's Information Schema TABLE_CONSTRAINTS view
where the value of CONSTRAINT_TYPE is 'PRIMARY KEY'.

ii) Let X represent the set of rows formed by a natural inner join on the values in the CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns
between the rows in SS's Information Schema REFERENTIAL_CONSTRAINTS view and the
matching rows in SS's Information Schema TABLE_CONSTRAINTS view.

iii) Let FKS represent the rows defining the foreign keys that reference an individual primary key
in PKS. These rows are obtained by matching the values of CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns in a row of PKS to the values

178 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

in the UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA, and
UNIQUE_CONSTRAINT_NAME columns in X.

iv) Let FKSS represent the set of rows in the combination of all FKS sets.

v) Let PK_COLS represent the set of rows in SS's Information Schema KEY_COLUMN_USAGE
view that define the columns within an individual primary key row in PKS.

vi) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

vii) Let FK_COLS represent the set of rows in SS's Information Schema KEY_COLUMN_USAGE
view that define the columns within an individual foreign key in FKSS.

viii) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

ix) Let XKS_COLS represent the set of extended rows formed by the inner equijoin of PKS_COLS
and UKS_COLS matching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, and ORDINAL_POSITION of PKS_COLS with CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and POSITION_IN_UNIQUE_CON-
STRAINT of FKS_COLS, respectively.

Let PKS_COLS_NAME be the name of each column of PKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from PKS_COLS are respectively 'P_' ||
UKS_COLS_NAME.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from FKS_COLS are respectively 'F_' ||
FKS_COLS_NAME.

x) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLS where:

1) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information
Schema metadata constrained by privileges”).

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains one or more
rows describing the foreign keys that reference the primary key of a specific table in
SS's Information Schema TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each column of all the foreign
keys that reference the primary key of a specific table in SS's Information Schema
TABLE_CONSTRAINTS view in accordance with implementation-defined authorization
criteria.

xi) For each row of FOREIGN_KEYS_QUERY:

1) If the implementation does not support catalog names, then UK_TABLE_CAT is set to the
null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_QUERY is the
value of the P_TABLE_CATALOG column in XKS_COLS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_SCHEMA column in XKS_COLS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_NAME column in XKS_COLS.

SQL/CLI routines 179

CD 9075-3:200x(E)
6.23 ForeignKeys

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
P_COLUMN_NAME column in XKS_COLS.

5) If the implementation does not support catalog names, then UK_TABLE_CAT is set to the
null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS_QUERY is the
value of the F_TABLE_CATALOG column in XKS_COLS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS_COLS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS_COLS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS_COLS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
F_ORDINAL_POSITION column in XKS_COLS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the value of
the UPDATE_RULE column in XKS_COLS as follows.

A) Let UR be the value in the UPDATE_RULE column.

B) If UR is 'CASCADE', then the value of UPDATE_RULE is the code for CASCADE in
Table 27, “Miscellaneous codes used in CLI”.

C) If UR is 'RESTRICT', then the value of UPDATE_RULE is the code for RESTRICT
in Table 27, “Miscellaneous codes used in CLI”.

D) If UR is 'SET NULL', then the value of UPDATE_RULE is the code for SET NULL in
Table 27, “Miscellaneous codes used in CLI”.

E) If UR is 'NO ACTION', then the value of UPDATE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes used in CLI”.

F) If UR is 'SET DEFAULT', then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 27, “Miscellaneous codes used in CLI”.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the value of
the DELETE_RULE column in XKS_COLS.

A) Let DR be the value in the DELETE_RULE column.

B) If DR is 'CASCADE', then the value of DELETE_RULE is the code for CASCADE in
Table 27, “Miscellaneous codes used in CLI”.

C) If DR is 'RESTRICT', then the value of DELETE_RULE is the code for RESTRICT in
Table 27, “Miscellaneous codes used in CLI”.

D) If DR is 'SET NULL', then the value of DELETE_RULE is the code for SET NULL in
Table 27, “Miscellaneous codes used in CLI”.

E) If DR is 'NO ACTION', then the value of DELETE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes used in CLI”.

F) If DR is 'SET DEFAULT', then the value of DELETE_RULE is the code for SET
DEFAULT in Table 27, “Miscellaneous codes used in CLI”.

180 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CON-
STRAINT_NAME column in XKS_COLS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the
UNIQUE_CONSTRAINT_NAME column in XKS_COLS.

14) If there are no implementation-defined mechanisms for setting the value of DEFERABILITY
in FOREIGN_KEYS_QUERY to the value of the code for INITIALLY DEFERRED or to
the value of the code for INITIALLY IMMEDIATE in Table 27, “Miscellaneous codes
used in CLI”, then the value of DEFERABILITY in FOREIGN_KEYS_QUERY is the code
for NOT DEFERRABLE in Table 27, “Miscellaneous codes used in CLI”; otherwise, the
value of DEFERABILITY in FOREIGN_KEYS_QUERY can be the code for INITIALLY
DEFERRED, the value of the code for INITIALLY IMMEDIATE, or the code for NOT
DEFERRABLE in Table 27, “Miscellaneous codes used in CLI”.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is 'PRIMARY'.

xii) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3,
respectively.

xiii) Let CATVAL, SCHVAL, and TBLVAL be the values of PKCatalogName, PKSchemaName, and
PKTableName, respectively.

xiv) If the METADATA ID attribute of S is TRUE, then:

1) If PKCatalogName is a null pointer and the value of the CATALOG NAME information
type from Table 29, “Codes and data types for implementation information”, Y, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

2) If PKSchemaName is a null pointer or if PKTableName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

xv) If PKCatalogName is a null pointer, then NL1 is set to zero. If PKSchemaName is a null pointer,
then NL2 is set to zero. If PKTableName is a null pointer, then NL3 is set to zero.

xvi) Case:

1) If NL1 is not negative, then let L be NL1.

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of PKCatalog-
Name that precede the implementation-defined null character that terminates a C character
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let CATVAL be the first L octets of PKCatalogName.

xvii) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of PKSchem-
aName that precede the implementation-defined null character that terminates a C character
string.

SQL/CLI routines 181

CD 9075-3:200x(E)
6.23 ForeignKeys

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let SCHVAL be the first L octets of PKSchemaName.

xviii) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of PKTableName
that precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

Let TBLVAL be the first L octets of PKTableName.

xix) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('CATVAL') FROM
CHAR_LENGTH(TRIM('CATVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH (TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = 'TEMPSTR' AND

2) Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER('CATVAL') AND

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('SCHVAL') FROM
CHAR_LENGTH(TRIM('SCHVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

182 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

SUBSTRING (TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH (TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = 'TEMPSTR' AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER('SCHVAL') AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('TBLVAL') FROM
CHAR_LENGTH(TRIM('TBLVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = 'TEMPSTR' AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER('TBLVAL') AND

2) Otherwise:

A) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let
CATSTR be the character string:

FK_TABLE_CAT = 'CATVAL' AND

B) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

FK_TABLE_SCHEM = 'SCHVAL' AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

FK_TABLE_NAME = 'TBLVAL' AND

xx) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

SQL/CLI routines 183

CD 9075-3:200x(E)
6.23 ForeignKeys

xxi) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xxii) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

c) If CHAR_LENGTH(PKN) ≠ 0 (zero) and CHAR_LENGTH(FKN) ≠ 0 (zero), then the result of the
routine is implementation-defined.

184 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.23 ForeignKeys

6.24 FreeConnect

Function

Deallocate an SQL-connection.

Definition

FreeConnect (
 ConnectionHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) FreeHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE and with CH as
the value of Handle.

SQL/CLI routines 185

CD 9075-3:200x(E)
6.24 FreeConnect

6.25 FreeEnv

Function

Deallocate an SQL-environment.

Definition

FreeEnv (
 EnvironmentHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) FreeHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE and with EH
as the value of Handle.

186 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.25 FreeEnv

6.26 FreeHandle

Function

Free a resource.

Definition

FreeHandle (
 HandleType IN SMALLINT,
 Handle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If H does not identify an allocated SQL-environment, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Let E be the allocated SQL-environment identified by H.

iii) The diagnostics area associated with E is emptied.

iv) If an allocated SQL-connection is associated with E, then an exception condition is raised: CLI-
specific condition — function sequence error.

v) E is deallocated and all its resources are freed.

b) If HT indicates CONNECTION HANDLE, then:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Let C be the allocated SQL-connection identified by H.

iii) The diagnostics area associated with C is emptied.

iv) If an established SQL-connection is associated with C, then an exception condition is raised:
CLI-specific condition — function sequence error.

v) C is deallocated and all its resources are freed.

c) If HT indicates STATEMENT HANDLE, then:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised: CLI-
specific condition — invalid handle.

SQL/CLI routines 187

CD 9075-3:200x(E)
6.26 FreeHandle

ii) Let S be the allocated SQL-statement identified by H.

iii) The diagnostics area associated with S is emptied.

iv) Let C be the allocated SQL-connection with which S is associated and let EC be the established
SQL-connection associated with C.

v) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

vi) If there is a deferred parameter number associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

vii) If there is an open cursor associated with S, then:

1) The open cursor associated with S is placed in the closed state and its copy of the select
source is destroyed.

2) Any fetched row associated with S is removed from association with S.

viii) The automatically allocated CLI descriptor areas associated with S are deallocated and all their
resources are freed.

ix) S is deallocated and all its resources are freed.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Let D be the allocated CLI descriptor area identified by H.

iii) The diagnostics area associated with D is emptied.

iv) Let C be the allocated SQL-connection with which D is associated and let EC be the established
SQL-connection associated with C.

v) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

vi) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to D as the
DESCRIPTOR AREA.

vii) Let AT be the value of the ALLOC_TYPE field of D.

viii) If AT indicates AUTOMATIC, then an exception condition is raised: CLI-specific condition —
invalid use of automatically-allocated descriptor handle.

ix) Let L1 be a list of allocated SQL-statements associated with C for which D is the current appli-
cation row descriptor. For each allocated SQL-statement S in L1, the automatically-allocated
application row descriptor associated with S becomes the current application row descriptor for
S.

x) Let L2 be a list of allocated SQL-statements associated with C for which D is the current appli-
cation parameter descriptor. For each allocated SQL-statement S in L2, the automatically-allocated
application parameter descriptor associated with S becomes the current application parameter
descriptor for S.

188 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.26 FreeHandle

xi) D is deallocated and all its resources are freed.

SQL/CLI routines 189

CD 9075-3:200x(E)
6.26 FreeHandle

6.27 FreeStmt

Function

Deallocate an SQL-statement.

Definition

FreeStmt (
 StatementHandle IN INTEGER ,
 Option IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let SH be the value of StatementHandle and let S be the allocated SQL-statement identified by SH.

2) Let OPT be the value of Option.

3) If OPT is not one of the codes in Table 19, “Codes used for FreeStmt options”, then an exception condition
is raised: CLI-specific condition — invalid attribute identifier.

4) Let ARD be the current application row descriptor for S and let RC be the value of the COUNT field of
ARD.

5) Let APD be the current application parameter descriptor for S and let PC be the value of the COUNT field
of APD.

6) Case:

a) If OPT indicates CLOSE CURSOR and there is an open cursor associated with S, then:

i) The open cursor associated with S is placed in the closed state and its copy of the select source
is destroyed.

ii) Any fetched row associated with S is removed from association with S.

b) If OPT indicates FREE HANDLE, then FreeHandle is implicitly invoked with HandleType indicating
STATEMENT HANDLE and with SH as the value of Handle.

c) If OPT indicates UNBIND COLUMNS, then for each of the first RC item descriptor areas of ARD, the
value of the DATA_POINTER field is set to zero.

d) If OPT indicates UNBIND PARAMETERS, then for each of the first PC item descriptor areas of APD,
the value of the DATA_POINTER field is set to zero.

e) If OPT indicates REALLOCATE, then the following objects associated with S are destroyed:

i) Any prepared statement.

ii) Any cursor.

iii) Any select source.

190 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.27 FreeStmt

iv) Any executed statement.

and the original automatically allocated descriptors are associated with the allocated SQL-statement
with their original default values as described in the General Rules of Subclause 6.3, “AllocHandle”.

SQL/CLI routines 191

CD 9075-3:200x(E)
6.27 FreeStmt

6.28 GetConnectAttr

Function

Get the value of an SQL-connection attribute.

Definition

GetConnectAttr (
 ConnectionHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 17, “Codes used for connection attributes”, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

4) If A indicates POPULATE IPD, then

Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise:

i) If POPULATE IPD for C is True, then Value is set to 1 (one).

ii) If POPULATE IPD for C is False, then Value is set to 0 (zero).

5) If A indicates SAVEPOINT NAME, then:

a) Let BL be the value of BufferLength.

b) Let AV be the value of the SAVEPOINT NAME connection attribute.

192 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.28 GetConnectAttr

c) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Value, AV, BL, and
StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

6) If A specifies an implementation-defined connection attribute, then

Case:

a) If the data type for the connection attribute is specified in Table 20, “Data types of attributes”, as
INTEGER, then Value is set to the value of the implementation-defined connection attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined connection attribute.

iii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Value, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 193

CD 9075-3:200x(E)
6.28 GetConnectAttr

6.29 GetCursorName

Function

Get a cursor name.

Definition

GetCursorName (
 StatementHandle IN INTEGER,
 CursorName OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no cursor name associated with S, then a unique implementation-dependent name that has
the prefix 'SQLCUR' or the prefix 'SQL_CUR' becomes the cursor name associated with S; let CN be
that associated cursor name.

b) Otherwise, let CN be the cursor name associated with S.

3) Let BL be the value of BufferLength.

4) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with CursorName, CN, BL,
and NameLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

194 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.29 GetCursorName

6.30 GetData

Function

Retrieve a column value.

Definition

GetData (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no fetched rowset associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

b) If the fetched rowset associated with S is empty, then a completion condition is raised: no data, Target-
Value and StrLen_or_Ind are set to implementation-dependent values, and no further rules of this
Subclause are applied.

c) Otherwise, let R be the fetched rowset associated with S.

3) Let ARD be the current application row descriptor for S and let N be the value of the TOP_LEVEL_COUNT
field of ARD.

4) Let AS be the value of the ARRAY_SIZE field in the header of ARD. Let P be the value of the attribute
CURRENT OF POSITION of S.

5) If P is greater than AS, the P-th row in R has not been fetched, or the value of the CURSOR SCROLLABLE
attribute of S is NONSCROLLABLE and AS is greater than 1 (one), then an exception condition is raised:
CLI-specific condition — invalid cursor position.

6) Let FR be the P-th row of R.

7) Let D be the degree of the table defined by the select source associated with S.

8) If N is less than zero, then an exception condition is raised: dynamic SQL error — invalid descriptor count.

9) Let CN be the value of ColumnNumber.

10) If CN is less than 1 (one) or greater than D, then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

SQL/CLI routines 195

CD 9075-3:200x(E)
6.30 GetData

11) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of ARD for which
LEVEL is 0 (zero) and the value of TYPE is neither ROW, ARRAY, nor MULTISET, then let BCN be the
column number associated with such an item descriptor area and let HBCN be the value of MAX(BCN).
Otherwise, let HBCN be zero.

12) Let IDA be the item descriptor area of ARD specified by CN. If the value of TYPE in IDA is either ROW,
ARRAY, or MULTISET, or if the LEVEL of IDA is greater than 0 (zero), then an exception condition is
raised: dynamic SQL error — invalid descriptor index.

NOTE 29 — GetData cannot be called to retrieve the data corresponding to a subordinate descriptor record such as, for example,
from an individual field of a ROW type.

13) If CN is not greater than HBCN, then

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised: dynamic SQL
error — invalid descriptor index.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an exception
condition is raised: dynamic SQL error — invalid descriptor index.

NOTE 30 — This implementation-defined feature determines whether columns before the highest bound column can be
accessed by GetData.

14) If there is a fetched column number associated with FR, then let FCN be that column number; otherwise,
let FCN be zero.

NOTE 31 — “fetched column number” is the ColumnNumber value used with the previous invocation (if any) of the GetData
routine with FR. See the General Rules later in this Subclause where this value is set.

15) Case:

a) If FCN is greater than zero and CN is not greater than FCN, then it is implementation-defined whether
an exception condition is raised: dynamic SQL error — invalid descriptor index.

NOTE 32 — This implementation-defined feature determines whether GetData can only access columns in ascending column
number order.

b) If FCN is less than zero, then:

i) Let AFCN be the absolute value of FCN.

ii) Case:

1) If CN is less than AFCN, then it is implementation-defined whether an exception condition
is raised: dynamic SQL error — invalid descriptor index.

NOTE 33 — This implementation-defined feature determines whether GetData can only access columns in
ascending column number order.

2) If CN is greater than AFCN, then let FCN be AFCN.

16) Let T be the value of TargetType.

17) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

196 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.30 GetData

18) If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) T indicates neither DEFAULT nor ARD TYPE and is not one of the code values in Table 8, “Codes
used for application data types in SQL/CLI”.

b) T is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

19) If T does not indicate ARD TYPE, then the data type of the <target specification> described by IDA is set
to T.

20) Let IRD be the implementation row descriptor associated with S.

21) If the value of the TYPE field of IDA indicates DEFAULT, then:

a) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
CN-th item descriptor area of IRD for which LEVEL is 0 (zero).

b) The data type, precision, and scale of the <target specification> described by IDA are set to CT, P, and
SC, respectively, for the purposes of this GetData invocation only.

22) If IDA is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an
exception condition is raised: dynamic SQL error — using clause does not match target specifications.

23) Let TT be the value of the TYPE field of IDA.

24) Case:

a) If TT indicates CHARACTER, then:

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in Table 7,
“Codes used for implementation data types in SQL/CLI”.

ii) Let CL be the implementation-defined maximum length for a CHARACTER VARYING data
type.

b) Otherwise, let UT be TT and let CL be zero.

25) Case:

a) If FCN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then AFCN becomes the fetched column number
associated with the fetched row associated with S and an exception condition is raised: dynamic
SQL error — invalid descriptor index.

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length, respectively,
associated with FCN and let TV be the result of the <string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

SQL/CLI routines 197

CD 9075-3:200x(E)
6.30 GetData

i) Let FL be zero.

ii) Let SDT be the effective data type of the CN-th <select list> column as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATE-
TIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the CN-th item descriptor area of IRD. Let
SV be the value of the <select list> column, with data type SDT.

iii) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the CN-th <select
list> column whose value is SV be represented by the values of the SPECIFIC_TYPE_CATA-
LOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding
item descriptor area of IRD.

iv) Let TDT be the effective data type of the CN-th <target specification> as represented by the type
UT, the length value CL, and the values of the PRECISION, SCALE, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields of IDA.

v) Let LTDT be the data type on the last retrieval of the CN-th <target specification>, if any. If any
of the following is true, then it is implementation-defined whether or not exception condition is
raised: dynamic SQL error — restricted data type attribute violation.

1) If LTDT and TDT both identify a binary large object type and only one of LTDT and TDT
is a binary large object locator.

2) If LTDT and TDT both identify a character large object type and only one of LTDT and TDT
is a character large object locator.

3) If LTDT and TDT both identify an array type and only one of LTDT and TDT is an array
locator.

4) If LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a multiset
locator.

5) If LTDT and TDT both identify a user-defined type and only one of LTDT and TDT is a user-
defined type locator.

vi) Case:

1) If TDT is a locator type, then

Case:

A) If SV is not the null value, then a locator L that uniquely identifies SV is generated and
the value TV of the CN-th <target specification> is set to an implementation-dependent
four-octet value that represents L.

B) Otherwise, the value TV of the CN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

Case:

198 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.30 GetData

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the CN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”,
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and the result is the value TV of the CN-th <target
specification>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

C) The Syntax Rules of Subclause 9.19, “Determination of a from-sql function”, in ISO/IEC
9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:

1) If FSFRT is compatible with TDT, then the from-sql function TSF is effec-
tively invoked with SV as its input parameter and the <return value> is the
value TV of the CN-th <target specification>.

2) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

26) CN becomes the fetched column number associated with the fetched row associated with S.

27) If TV is the null value, then

SQL/CLI routines 199

CD 9075-3:200x(E)
6.30 GetData

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

b) Otherwise, StrLen_or_Ind is set to the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscel-
laneous codes used in CLI”, and the value of TargetValue is implementation-dependent.

28) Let OL be the value of BufferLength.

29) If null termination is True for the current SQL-environment, then let NB be the length in octets of a null
terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

30) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined whether or not
an exception condition is raised: data exception — zero-length character string.

B) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Tar-
getValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

2) If TT is BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the General
Rules of Subclause 5.10, “Binary string retrieval”, are applied with TargetValue, TV, OL,
and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in octets.

4) Let FL be (FL+OL–NB).

5) If FL is less than DL, then –CN becomes the fetched column number associated with the
fetched row associated with S and FL, DV and DL become the fetched length, data value,
and data length, respectively, associated with the fetched column number.

200 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.30 GetData

6.31 GetDescField

Function

Get a field from a CLI descriptor area.

Definition

GetDescField (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of the
COUNT field of D.

2) Let FI be the value of FieldIdentifier.

3) If FI is not one of the code values in Table 21, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

4) Let RN be the value of RecordNumber.

5) Let TYPE be the value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

6) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to D as the DESCRIPTOR
AREA.

7) If TYPE is 'ITEM', then:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

b) If RN is greater than N, then a completion condition is raised: no data.

8) If D is an implementation row descriptor, then let S be the allocated SQL-statement associated with D.

9) Let MBR be the value of the May Be Retrieved column in the row of Table 23, “Ability to retrieve SQL/CLI
descriptor fields”, that contains FI and the column that contains the descriptor type D.

10) If MBR is 'PS' and there is no prepared or executed statement associated with S, then an exception condition
is raised: CLI-specific condition — associated statement is not prepared.

11) If MBR is 'No', then an exception condition is raised: CLI-specific condition — invalid descriptor field
identifier.

SQL/CLI routines 201

CD 9075-3:200x(E)
6.31 GetDescField

12) If FI indicates a descriptor field whose value is the initially undefined value created when the descriptor
was created, then an exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

13) Let IDA be the item descriptor area of D specified by RN.

14) If TYPE is 'HEADER', then header information from the descriptor area D is retrieved as follows.

Case:

a) If FI indicates COUNT, then the value retrieved is N.

b) If FI indicates ALLOC_TYPE, then the value retrieved is the allocation type for D.

c) If FI indicates an implementation-defined descriptor header field, then the value retrieved is the value
of the implementation-defined descriptor header field identified by FI.

d) Otherwise, if FI indicates a descriptor header field defined in Table 21, “Codes used for SQL/CLI
descriptor fields”, then the value retrieved is the value of the descriptor header field identified by FI.

15) If TYPE is 'ITEM', then item information from the descriptor area D is retrieved as follows:

Case:

a) If FI indicates an implementation-defined descriptor item field, then the value retrieved is the value of
the implementation-defined descriptor item field of IDA identified by FI.

b) Otherwise, if FI indicates a descriptor item field defined in Table 21, “Codes used for SQL/CLI
descriptor fields”, then the value retrieved is the value of the descriptor item field of IDA identified by
FI.

16) Let V be the value retrieved.

17) If FI indicates a descriptor field whose row in Table 6, “Fields in SQL/CLI row and parameter descriptor
areas”, contains a Data Type that is not CHARACTER VARYING, then Value is set to V and no further
rules of this Subclause are applied.

18) Let BL be the value of BufferLength.

19) If FI indicates a descriptor field whose row in Table 6, “Fields in SQL/CLI row and parameter descriptor
areas”, contains a Data Type that is CHARACTER VARYING, then the General Rules of Subclause 5.9,
“Character string retrieval”, are applied with Value, V, BL, and StringLength as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

202 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.31 GetDescField

6.32 GetDescRec

Function

Get commonly-used fields from a CLI descriptor area.

Definition

GetDescRec (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 Name OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT,
 Type OUT SMALLINT,
 SubType OUT SMALLINT,
 Length OUT INTEGER,
 Precision OUT SMALLINT,
 Scale OUT SMALLINT,
 Nullable OUT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of the
COUNT field of D.

2) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to D as the DESCRIPTOR
AREA.

3) Let RN be the value of RecordNumber.

4) Case:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

b) Otherwise, if RN is greater than N, then a completion condition is raised: no data.

5) If D is an implementation row descriptor associated with an allocated SQL-statement S and there is no
prepared or executed statement associated with S, then an exception condition is raised: CLI-specific con-
dition — associated statement is not prepared.

6) Let ITEM be the <dynamic parameter specification> or <select list> column (or part thereof, if the item
descriptor area of D is a subordinate descriptor) described by the item descriptor area of D specified by
RN.

7) Let BL be the value of BufferLength.

SQL/CLI routines 203

CD 9075-3:200x(E)
6.32 GetDescRec

8) Information is retrieved from D:

a) If Type is not a null pointer, then Type is set to the value of the TYPE field of ITEM.

b) If SubType is not a null pointer, then SubType is set to the value of the DATETIME_INTERVAL_CODE
field of ITEM.

c) If Length is not a null pointer, then Length is set to value of the OCTET_LENGTH field of ITEM.

d) If Precision is not a null pointer, then Precision is set to the value of the PRECISION field of ITEM.

e) If Scale is not a null pointer, then Scale is set to the value of the SCALE field of ITEM.

f) If Nullable is not a null pointer, then Nullable is set to the value of the NULLABLE field of ITEM.

g) If Name is not a null pointer, then

Case:

i) If null termination is False for the current SQL-environment and BL is zero, then no further
rules of this Subclause are applied.

ii) Otherwise:

1) The value retrieved is the value of the NAME field of ITEM.

2) Let V be the value retrieved.

3) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Name,
V, BL, and NameLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

204 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.32 GetDescRec

6.33 GetDiagField

Function

Get information from a CLI diagnostics area.

Definition

GetDiagField (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 RecordNumber IN SMALLINT,
 DiagIdentifier IN SMALLINT,
 DiagInfo OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-environ-
ment, then an exception condition is raised: CLI-specific condition — invalid handle.

b) If HT indicates CONNECTION HANDLE and Handle does not identify an allocated SQL-connection,
then an exception condition is raised: CLI-specific condition — invalid handle.

c) If HT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-statement,
then an exception condition is raised: CLI-specific condition — invalid handle.

d) If HT indicates DESCRIPTOR HANDLE and Handle does not identify an allocated CLI descriptor
area, then an exception condition is raised: CLI-specific condition — invalid handle.

4) Let DI be the value of DiagIdentifier.

5) If DI is not one of the code values in Table 13, “Codes used for SQL/CLI diagnostic fields”, then an
exception condition is raised: CLI-specific condition — invalid attribute value.

6) Let TYPE be the value of the Type column in the row that contains DI in Table 13, “Codes used for SQL/CLI
diagnostic fields”.

7) Let RN be the value of RecordNumber.

8) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for which
Handle was passed as the value of an input handle and let N be the number of status records generated by
the execution of R.

SQL/CLI routines 205

CD 9075-3:200x(E)
6.33 GetDiagField

NOTE 34 — The GetDiagRec, GetDiagField, and Error routines may cause exception or completion conditions to be raised, but
they do not cause diagnostic information to be generated.

9) If TYPE is 'STATUS', then:

a) If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

b) If RN is greater than N, then a completion condition is raised: no data, and no further rules of this
Subclause are applied.

10) If DI indicates ROW_COUNT and R is neither Execute nor ExecDirect, then an exception condition is
raised: CLI-specific condition — invalid attribute identifier.

11) If TYPE is 'HEADER', then header information from the diagnostics area associated with the resource
identified by Handle is retrieved.

a) If DI indicates NUMBER, then the value retrieved is N.

b) If DI indicates DYNAMIC_FUNCTION, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is a zero-
length string.

ii) Otherwise, the value retrieved is the character identifier of the SQL-statement being prepared
or executed by R. The value DYNAMIC_FUNCTION values are specified in Table 32, “SQL-
statement codes”, in ISO/IEC 9075-2.

NOTE 35 — Additional valid DYNAMIC_FUNCTION values may be defined in other parts of ISO/IEC 9075.

c) If DI indicates DYNAMIC_FUNCTION_CODE, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is 0 (zero).

ii) Otherwise, the value retrieved is the integer identifier of the SQL-statement being prepared or
executed by R. The value DYNAMIC_FUNCTION_CODE values are specified in Table 32,
“SQL-statement codes”, in ISO/IEC 9075-2.

NOTE 36 — Additional valid DYNAMIC_FUNCTION_CODE values may be defined in other parts of ISO/IEC
9075.

d) If DI indicates RETURNCODE, then the value retrieved is the code indicating the basic result of the
execution of R. Subclause 4.2, “Return codes”, specifies the code values and their meanings.

NOTE 37 — The value retrieved will never indicate Invalid handle or Data needed, since no diagnostic information is
generated if this is the basic result of the execution of R.

e) If DI indicates ROW_COUNT, the value retrieved is the number of rows affected as the result of exe-
cuting a <delete statement: searched>, <insert statement>, <merge statement>, or <update statement:
searched> as a direct result of the execution of the SQL-statement executed by R. Let S be the <delete
statement: searched>, <insert statement>, <merge statement>, or <update statement: searched>. Let T
be the table identified by the <table name> directly contained in S.

Case:

i) If S is an <insert statement>, then the value retrieved is the number of rows inserted into T.

206 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.33 GetDiagField

ii) If S is a <merge statement>, then let TR1 be the <target table> immediately contained in S, let
TR2 be the <table reference> immediately contained in S, and let SC be the <search condition>
immediately contained in S. If <merge correlation name> is specified, let MCN be “AS <merge
correlation name>”; otherwise, let MCN be a zero-length string.

Case:

1) If S contains a <merge when matched clause> and does not contain a <merge when not
matched clause>, then the value retrieved is effectively derived by executing the statement:

SELECT COUNT (*)
FROM TR1 MCN, TR2
WHERE SC

before the execution of S.

2) If S contains a <merge when not matched clause> and does not contain a <merge when
matched clause>, then the value retrieved is effectively derived by executing the statement:

(SELECT COUNT(*)
FROM TR1 MCN

RIGHT OUTER JOIN
TR2
ON SC)

-
(SELECT COUNT (*)

FROM TR1 MCN, TR2
WHERE SC)

before the execution of S.

3) If S contains both a <merge when matched clause> and a <merge when not matched clause>,
then the value retrieved is effectively derived by executing the statement:

SELECT COUNT(*)
FROM TR1 MCN

RIGHT OUTER JOIN
TR2
ON SC

before the execution of S.

iii) If S is a <delete statement: searched> or an <update statement: searched>, then

Case:

1) If S does not contain a <search condition>, then the value retrieved is the cardinality of T
before the execution of S.

2) Otherwise, let SC be the <search condition> directly contained in S. The value retrieved is
effectively derived by executing the statement:

SELECT COUNT(*)
FROM T
WHERE SC

before the execution of S.

SQL/CLI routines 207

CD 9075-3:200x(E)
6.33 GetDiagField

The value retrieved following the execution by R of an SQL-statement that does not directly
result in the execution of a <delete statement: searched>, <insert statement>, <merge state-
ment>, or <update statement: searched> is implementation-dependent.

f) If DI indicates MORE, then the value retrieved is

Case:

i) If more conditions were raised during execution of R than have been stored in the diagnostics
area, then 1 (one).

ii) If all the conditions that were raised during execution of R have been stored in the diagnostics
area, then 0 (zero).

g) If DI indicates TRANSACTIONS_COMMITTED, then the value retrieved is the number of SQL-
transactions that have been committed since the most recent time at which the diagnostics area for HT
was emptied.

NOTE 38 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, and Subclause 13.4, “Calls to an
<externally-invoked procedure>”, in ISO/IEC 9075-2. TRANSACTIONS_COMMITTED indicates the number of SQL-
transactions that were committed during the invocation of an external routine.

h) If DI indicates TRANSACTIONS_ROLLED_BACK, then the value retrieved is the number of SQL-
transactions that have been rolled back since the most recent time at which the diagnostics area for HT
was emptied.

NOTE 39 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, and Subclause 13.4, “Calls to an
<externally-invoked procedure>”, in ISO/IEC 9075-2. TRANSACTIONS_ROLLED_BACK indicates the number of SQL-
transactions that were rolled back during the invocation of an external routine.

i) If DI indicates TRANSACTION_ACTIVE, then the value retrieved is 1 (one) if an SQL-transaction
is currently active and is 0 (zero) if an SQL-transaction is not currently active.

NOTE 40 — TRANSACTION_ACTIVE indicates whether an SQL-transaction is active upon return from an external routine.

j) If DI indicates an implementation-defined diagnostics header field, then the value retrieved is the value
of the implementation-defined diagnostics header field.

12) If TYPE is 'STATUS', then information from the RN-th status record in the diagnostics area associated with
the resource identified by Handle is retrieved.

a) If DI indicates CONDITION_NUMBER, then the value retrieved is RN.

b) If DI indicates SQLSTATE, then the value retrieved is the SQLSTATE value corresponding to the
status condition.

c) If DI indicates NATIVE_CODE, then the value retrieved is the implementation-defined native error
code corresponding to the status condition.

d) If DI indicates MESSAGE_TEXT, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to external routine invocation exception, external routine
exception, or warning, then the message text item of the SQL-invoked routine that raised the
exception condition.

ii) Otherwise, an implementation-defined character string.

208 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.33 GetDiagField

NOTE 41 — An implementation may provide <space>s or a zero-length string or a character string that describes
the status condition.

e) If DI indicates MESSAGE_LENGTH, then the value retrieved is the length in characters of the char-
acter string value of MESSAGE_TEXT corresponding to the status condition.

f) If DI indicates MESSAGE_OCTET_LENGTH, then the value retrieved is the length in octets of the
character string value of MESSAGE_TEXT corresponding to the status condition.

g) If DI indicates CLASS_ORIGIN, then the value retrieved is the identification of the naming authority
that defined the class value of the SQLSTATE value corresponding to the status condition. That value
shall be 'ISO 9075' if the class value is fully defined in Subclause 24.1, “SQLSTATE”, in ISO/IEC
9075-2 or Subclause 5.12, “CLI-specific status codes”, and shall be an implementation-defined character
string other than 'ISO 9075' for any implementation-defined class value.

h) If DI indicates SUBCLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the subclass value of the SQLSTATE value corresponding to the status condition.
That value shall be 'ISO 9075' if the subclass value is fully defined in Subclause 24.1, “SQLSTATE”,
in ISO/IEC 9075-2, or Subclause 5.12, “CLI-specific status codes”, and shall be an implementation-
defined character string other than 'ISO 9075' for any implementation-defined subclass value.

i) If DI indicates CURSOR_NAME, CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME,
PARAMETER_MODE, PARAMETER_NAME, PARAMETER_ORDINAL_POSITION, ROU-
TINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME, SPECIFIC_NAME, TRIGGER_CAT-
ALOG, TRIGGER_SCHEMA, or TRIGGER_NAME, then the values retrieved are

Case:

i) If the value of SQLSTATE corresponds to warning — cursor operation conflict, then the value
of CURSOR_NAME is the name of the cursor that caused the completion condition to be raised.

ii) If the value of SQLSTATE corresponds to integrity constraint violation, transaction rollback
— integrity constraint violation, or triggered data change violation, then:

1) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the <catalog
name> and the <unqualified schema name> of the <schema name> of the schema containing
the constraint or assertion. The value of CONSTRAINT_NAME is the <qualified identifier>
of the constraint or assertion.

2) Case:

A) If the violated integrity constraint is a table constraint, then the values of CATA-
LOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>, the
<unqualified schema name> of the <schema name>, and the <qualified identifier> or
<local table name>, respectively, of the table in which the table constraint is contained.

B) If the violated integrity constraint is an assertion and if only one table referenced by the
assertion has been modified as a result of executing the SQL-statement, then the values
of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name>, and the <qualified
identifier> or <local table name>, respectively, of the modified table.

C) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME
are <space>s.

SQL/CLI routines 209

CD 9075-3:200x(E)
6.33 GetDiagField

If the value of TABLE_NAME identifies a declared local temporary table, then the value
of CATALOG_NAME is <space>s and the value of SCHEMA_NAME is 'MODULE'.

iii) If the value of SQLSTATE corresponds to syntax error or access rule violation, then:

1) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name> of the schema that contains
the table that caused the syntax error or the access rule violation and the <qualified identifier>
or <local table name>, respectively. If TABLE_NAME refers to a declared local temporary
table, then CATALOG_NAME is <space>s and SCHEMA_NAME contains 'MODULE'.

2) If the syntax error or the access rule violation was for an inaccessible column, then the value
of COLUMN_NAME is the <column name> of that column. Otherwise, the value of
COLUMN_NAME is <space>s.

iv) If the value of SQLSTATE corresponds to invalid cursor state, then the value of CUR-
SOR_NAME is the name of the cursor that is in the invalid state.

v) If the value of SQLSTATE corresponds to with check option violation, then the values of
CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name> and the
<unqualified schema name> of the <schema name> of the schema that contains the view that
caused the violation of the WITH CHECK OPTION, and the <qualified identifier> of that view,
respectively.

vi) If the value of SQLSTATE does not correspond to syntax error or access rule violation, then:

1) If the values of CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, and COL-
UMN_NAME identify a column for which no privileges are granted to the enabled autho-
rization identifiers, then the value of COLUMN_NAME is replaced by a zero-length string.

2) If the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify a
table for which no privileges are granted to the enabled authorization identifiers, then the
values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are replaced by a
zero-length string.

3) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify a <table constraint> for some table T and if no privileges for T
are granted to the enabled authorization identifiers, then the values of CONSTRAINT_CAT-
ALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are replaced by a zero-
length string.

4) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify an assertion contained in some schema S and if the owner of S
is not included in the set of enabled authorization identifiers, then the values of CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are
replaced by a zero-length string.

vii) If the value of SQLSTATE corresponds to triggered action exception, to transaction rollback
— triggered action exception, or to triggered data change violation that was caused by a trigger,
then:

1) The values of TRIGGER_CATALOG and TRIGGER_SCHEMA are the <catalog name>
and the <unqualified schema name>, respectively, of the <schema name> of the schema
containing the trigger. The value of TRIGGER_NAME is the <qualified identifier> of the
<trigger name> of the trigger.

210 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.33 GetDiagField

2) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name>, and the <qualified identifier>
of the <table name>, respectively, of the table on which the trigger is defined.

viii) If the value of SQLSTATE corresponds to external routine invocation exception, or to external
routine exception, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name>
and the <unqualified schema name>, respectively,of the <schema name> of the schema
containing the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the <routine
name> and the <identifier> of the <specific name> of the SQL-invoked routine, respectively.

3) Case:

A) If the condition is related to some parameter Pi of the SQL-invoked routine, then:

I) The value of PARAMETER_MODE is the <parameter mode> of Pi.

II) The value of PARAMETER_ORDINAL_POSITION is the value of i.

III) The value of PARAMETER_NAME is a zero-length string.

B) Otherwise:

I) The value of PARAMETER_MODE is a zero-length string.

II) The value of PARAMETER_ORDINAL_POSITION is 0 (zero).

III) The value of PARAMETER_NAME is a zero-length string.

ix) If the value of SQLSTATE corresponds to data exception — numeric value out of range, data
exception — invalid character value for cast, data exception — string data, right truncation,
data exception — interval field overflow, integrity constraint violation, or warning — string
data, right truncation, and the condition was raised as the result of an assignment to an SQL
parameter during an SQL-invoked routine invocation, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name>
and <unqualified schema name>, respectively, of the <schema name> of the schema con-
taining the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the <routine
name> and the <identifier> of the <specific name>, respectively, of the SQL-invoked routine.

3) If the condition is related to some parameter Pi of the SQL-invoked routine, then:

A) The value of PARAMETER_MODE is the <parameter mode> of Pi.

B) The value of PARAMETER_ORDINAL_POSITION is the value of i.

C) If an <SQL parameter name> was specified for the SQL parameter when the SQL-
invoked routine was created, then the value of PARAMETER_NAME is the <SQL
parameter name> of that SQL parameter, Pi; otherwise, the value of PARAME-
TER_NAME is a zero-length string.

j) If DI indicates SERVER_NAME or CONNECTION_NAME, then the values retrieved are

SQL/CLI routines 211

CD 9075-3:200x(E)
6.33 GetDiagField

Case:

i) If R is Connect, then the name of the SQL-server explicitly or implicitly referenced by R and
the implementation-defined connection name associated with that SQL-server reference,
respectively.

ii) If R is Disconnect, then the name of the SQL-server and the associated implementation-defined
connection name, respectively, associated with the allocated SQL-connection referenced by R.

iii) If the status condition was caused by the application of the General Rules of Subclause 5.3,
“Implicit set connection”, then the name of the SQL-server and the implementation-defined
connection name, respectively, associated with the dormant SQL-connection specified in the
application of that Subclause.

iv) If the status condition was raised in an SQL-session, then the name of the SQL-server and the
implementation-defined connection name, respectively, associated with the SQL-session in
which the status condition was raised.

v) Otherwise, zero-length strings.

k) If DI indicates CONDITION_IDENTIFIER, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to unhandled user-defined exception, then the <condition
name> of the user-defined exception.

ii) Otherwise, a zero-length string.

l) If FI indicates ROW_NUMBER, then the value retrieved is the number of the row in the rowset to
which this status record corresponds. If the status record does not correspond to any particular row,
then the value retrieved is 0 (zero).

m) If FI indicates COLUMN_NUMBER, then the value retrieved is the number of the column to which
this status record corresponds. If the status record does not correspond to any particular column, then
the value retrieved is 0 (zero).

n) If DI indicates an implementation-defined diagnostics status field, then the value retrieved is the value
of the implementation-defined diagnostics status field.

13) Let V be the value retrieved.

14) If DI indicates a diagnostics field whose row in Table 1, “Header fields in SQL/CLI diagnostics areas” or
Table 2, “Status record fields in SQL/CLI diagnostics areas”, contains a Data Type that is neither CHAR-
ACTER nor CHARACTER VARYING, then DiagInfo is set to V and no further rules of this Subclause
are applied.

15) Let BL be the value of BufferLength.

16) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

17) Let L be the length in octets of V.

18) If StringLength is not a null pointer, then StringLength is set to L.

19) Case:

212 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.33 GetDiagField

If null termination is False for the current SQL-environment, then

Case:

a)

i) If L is not greater than BL, then the first L octets of DiagInfo are set to V and the values of the
remaining octets of DiagInfo are implementation-dependent.

ii) Otherwise, DiagInfo is set to the first BL octets of V.

b) Otherwise, let k be the number of octets in a null terminator in the character set of DiagInfo and let the
phrase “implementation-defined null character that terminates a C character string” imply k octets, all
of whose bits are 0 (zero).

Case:

i) If L is not greater than (BL–k), then the first (L+k) octets of DiagInfo are set to V concatenated
with a single implementation-defined null character that terminates a C character string. The
values of the remaining characters of DiagInfo are implementation-dependent.

ii) Otherwise, DiagInfo is set to the first (BL–k) octets of V concatenated with a single implemen-
tation-defined null character that terminates a C character string.

SQL/CLI routines 213

CD 9075-3:200x(E)
6.33 GetDiagField

6.34 GetDiagRec

Function

Get commonly-used information from a CLI diagnostics area.

Definition

GetDiagRec (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 RecordNumber IN SMALLINT,
 Sqlstate OUT CHARACTER(5),
 NativeError OUT INTEGER,
 MessageText OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 TextLength OUT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-environ-
ment, then an exception condition is raised: CLI-specific condition — invalid handle.

b) If HT indicates CONNECTION HANDLE and Handle does not identify an allocated SQL-connection,
then an exception condition is raised: CLI-specific condition — invalid handle.

c) If HT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-statement,
then an exception condition is raised: CLI-specific condition — invalid handle.

d) If HT indicates DESCRIPTOR HANDLE and Handle does not identify an allocated CLI descriptor
area, then an exception condition is raised: CLI-specific condition — invalid handle.

4) Let RN be the value of RecordNumber.

5) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for which
Handle was passed as the value of an input handle and let N be the number of status records generated by
the execution of R.

NOTE 42 — The GetDiagRec, GetDiagField, and Error routines may cause exception or completion conditions to be raised, but
they do not cause diagnostic information to be generated.

6) If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

214 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.34 GetDiagRec

7) If RN is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

8) Let BL be the value of BufferLength.

9) Information from the RN-th status record in the diagnostics area associated with the resource identified by
Handle is retrieved.

a) If Sqlstate is not a null pointer, then Sqlstate is set to the SQLSTATE value corresponding to the status
condition.

b) If NativeError is not a null pointer, then NativeError is set to the implementation-defined native error
code corresponding to the status condition.

c) If MessageText is not a null pointer, then

Case:

i) If null termination is False for the current SQL-environment and BL is zero, then no further
rules of this Subclause are applied.

ii) Otherwise, an implementation-defined character string is retrieved. Let MT be the implementation-
defined character string that is retrieved and let L be the length in octets of MT. If BL is not
greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length. If TextLength is not a null pointer, then TextLength is set to L.

Case:

1) If null termination is False for the current SQL-environment, then

Case:

A) If L is not greater than BL, then the first L octets of MessageText are set to MT and the
values of the remaining octets of MessageText are implementation-dependent.

B) Otherwise, MessageText is set to the first BL octets of MT.

2) Otherwise, let k the number of octets in a null terminator in the character set of MessageText
and let the phrase “implementation-defined null character that terminates a C character
string” imply k octets, all of whose bits are 0 (zero).

Case:

A) If L is not greater than (BL–k), then the first (L+k) octets of MessageText are set to MT
concatenated with a single implementation-defined null character that terminates a C
character string. The values of the remaining characters of MessageText are implemen-
tation-dependent.

B) Otherwise, MessageText is set to the first (BL–k) octets of MT concatenated with a single
implementation-defined null character that terminates a C character string.

NOTE 43 — An implementation may provide <space>s or a zero-length string or a character string that describes
the status condition.

SQL/CLI routines 215

CD 9075-3:200x(E)
6.34 GetDiagRec

6.35 GetEnvAttr

Function

Get the value of an SQL-environment attribute.

Definition

GetEnvAttr (
 EnvironmentHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies an allocated
skeleton SQL-environment, then an exception condition is raised: CLI-specific condition — invalid
handle.

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 16, “Codes used for environment attributes”, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

4) If A indicates NULL TERMINATION, then

Case:

a) If null termination for E is True, then Value is set to 1 (one).

b) If null termination for E is False, then Value is set to 0 (zero).

5) If A specifies an implementation-defined environment attribute, then

Case:

a) If the data type for the environment attribute is specified in Table 20, “Data types of attributes”, as
INTEGER, then Value is set to the value of the implementation-defined environment attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

216 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.35 GetEnvAttr

ii) Let AV be the value of the implementation-defined environment attribute.

iii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Value, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

SQL/CLI routines 217

CD 9075-3:200x(E)
6.35 GetEnvAttr

6.36 GetFeatureInfo

Function

Get information about features supported by the CLI implementation.

Definition

GetFeatureInfo (
 ConnectionHandle IN INTEGER,
 FeatureType IN CHARACTER(L1),
 FeatureTypeLength IN SMALLINT,
 FeatureId IN CHARACTER(L2),
 FeatureIdLength IN SMALLINT,
 SubFeatureId IN CHARACTER(L3),
 SubFeatureIdLength IN SMALLINT,
 Supported OUT SMALLINT)

RETURNS SMALLINT

where L1, L2, and L3 has a maximum value equal to the implementation-defined maximum length of a variable-
length character string.

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connection”,
are applied with EC as dormant SQL-connection.

4) Let FTL be the value of FeatureTypeLength.

5) Case:

a) If FTL is not negative, then let L be FTL.

b) If FTL indicates NULL TERMINATED, then let L be the number of octets of FeatureType that precede
the implementation-defined null character that terminates a C character string.

218 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.36 GetFeatureInfo

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

6) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

b) Otherwise, let FTV be the first L octets of FeatureType and let FT be the value of

TRIM (BOTH ' ' FROM 'FTV')

7) If FT is other than 'FEATURE', 'SUBFEATURE', or 'PACKAGE', then an exception condition is raised:
CLI-specific condition — invalid attribute value.

8) Let FIL be the value of FeatureIdIdLength.

9) Case:

a) If FIL is not negative, then let L be FIL.

b) If FIL indicates NULL TERMINATED, then let L be the number of octets of FeatureId that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

10) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

b) Otherwise, let FIV be the first L octets of FeatureId and let FI be the value of

TRIM (BOTH ' ' FROM 'FIV')

11) Case:

a) If FT is 'SUBFEATURE', then:

i) Let SFIL be the value of SubFeatureIdLength.

ii) Case:

1) If SFIL is not negative, then let L be SFIL.

2) If SFIL indicates NULL TERMINATED, then let L be the number of octets of SubFeatureId
that precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

2) Otherwise, let SFIV be the first L octets of SubFeatureId and let SFI be the value of

SQL/CLI routines 219

CD 9075-3:200x(E)
6.36 GetFeatureInfo

TRIM (BOTH ' ' FROM 'SFIV')

b) Otherwise, let SFI be a character string consisting of a single space.

12) If there is no row in the INFORMATION_SCHEMA.SQL_FEATURES view with FEATURE_SUBFEA-
TURE_PACKAGE_CODE equal to FT, FEATURE_ID equal to FI, and SUB_FEATURE_ID equal SFI,
then an exception condition is raised: CLI-specific condition — invalid attribute value.

13) Let SH be an allocated statement handle on C.

14) Let STMT be the character string:

SELECT IS_SUPPORTED
FROM INFORMATION_SCHEMA.SQL_FEATURES
WHERE FEATURE_SUBFEATURE_PACKAGE_CODE = 'FT'
AND FEATURE_ID = 'FI'
AND SUB_FEATURE_ID = 'SFI'

15) Let IS be the single column value returned by the implicit invocation of ExecDirect with SH as the value
of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value of TextLength.

16) If any status condition, such as connection failure, is caused by the implicit execution of ExecDirect, then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetFeatureInfo returns the same return code that was returned by the implicit invo-
cation of ExecDirect and no further Rules of this Subclause are applied.

17) If the value of IS is 'YES', then Supported is set to 1 (one); otherwise, Supported is set to 0 (zero).

220 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.36 GetFeatureInfo

6.37 GetFunctions

Function

Determine whether a CLI routine is supported.

Definition

GetFunctions (
 ConnectionHandle IN INTEGER,
 FunctionId IN SMALLINT,
 Supported OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connection”,
are applied with EC as dormant SQL-connection.

4) Let FI be the value of FunctionId.

5) If FI is not one of the codes in Table 28, “Codes used to identify SQL/CLI routines”, then an exception
condition is raised: CLI-specific condition — invalid FunctionId specified.

6) If FI identifies a CLI routine that is supported by the implementation, then Supported is set to 1 (one);
otherwise, Supported is set to 0 (zero). Table 28, “Codes used to identify SQL/CLI routines”, specifies the
codes used to identify the CLI routines defined in this part of ISO/IEC 9075.

SQL/CLI routines 221

CD 9075-3:200x(E)
6.37 GetFunctions

6.38 GetInfo

This Subclause is modified by Subclause 20.3, “GetInfo”, in ISO/IEC 9075-9.

Function

Get information about the implementation.

Definition

GetInfo (
 ConnectionHandle IN INTEGER,
 InfoType IN SMALLINT,
 InfoValue OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connection”,
are applied with EC as dormant SQL-connection.

4) Several General Rules in this Subclause cause implicit invocation of ExecDirect. If any status condition,
such as a connection failure, is caused by such implicit invocation of ExecDirect, then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetInfo returns the same return code that was returned by the implicit invocation
of ExecDirect and no further Rules of this Subclause are applied.

5) Let IT be the value of InfoType.

222 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.38 GetInfo

6) If IT is not one of the codes in Table 29, “Codes and data types for implementation information”, then an
exception condition is raised: CLI-specific condition — invalid information type.

7) Let SS be the SQL-server associated with EC.

8) Refer to a component of the SQL-client that is responsible for communicating with one or more SQL-
servers as a driver.

9) Let SH be an allocated statement handle on C.

10) Case:

a) If IT indicates any of the following:

— MAXIMUM COLUMN NAME LENGTH

— MAXIMUM COLUMNS IN GROUP BY

— MAXIMUM COLUMNS IN ORDER BY

— MAXIMUM COLUMNS IN SELECT

— MAXIMUM COLUMNS IN TABLE

— MAXIMUM CONCURRENT ACTIVITIES

— MAXIMUM CURSOR NAME LENGTH

— MAXIMUM DRIVER CONNECTIONS

— MAXIMUM IDENTIFIER LENGTH

— MAXIMUM SCHEMA NAME LENGTH

— MAXIMUM STATEMENT OCTETS DATA

— MAXIMUM STATEMENT OCTETS SCHEMA

— MAXIMUM STATEMENT OCTETS

— MAXIMUM TABLE NAME LENGTH

— MAXIMUM TABLES IN SELECT

— MAXIMUM USER NAME LENGTH

— MAXIMUM CATALOG NAME LENGTH

then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE SIZING_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT as
the value of TextLength.

SQL/CLI routines 223

CD 9075-3:200x(E)
6.38 GetInfo

b) If IT indicates any of the following:

— CATALOG NAME

— COLLATING SEQUENCE

— CURSOR COMMIT BEHAVIOR

— DATA SOURCE NAME

— DBMS NAME

— DBMS VERSION

— NULL COLLATION

— SEARCH PATTERN ESCAPE

— SERVER NAME

— SPECIAL CHARACTERS

then:

i) Let STMT be the character string;

SELECT CHARACTER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT as
the value of TextLength.

c) If IT indicates any of the following:

— DEFAULT TRANSACTION ISOLATION

— IDENTIFIER CASE

— TRANSACTION CAPABLE

then:

i) Let STMT be the character string;

SELECT INTEGER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT as
the value of TextLength.

d) If IT ≥ 21000 and IT ≤ 24999, or if IT ≥ 11000 and IT ≤ 14999, then:

i) Let STMT be the character string;

SELECT COALESCE (CHARACTER_VALUE, INTEGER_VALUE)

224 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.38 GetInfo

FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT as
the value of TextLength.

e) If IT ≥ 25000 and IT ≤ 29999, or if IT ≥ 15000 and IT ≤ 19999, then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT as
the value of TextLength.

11) Let BL be the value of BufferLength.

12) Case:

a) If the data type of V is character string, then the General Rules of Subclause 5.9, “Character string
retrieval”, are applied with InfoValue, V, BL, and StringLength as TARGET, VALUE, TARGET LENGTH,
and RETURNED LENGTH, respectively.

b) Otherwise, InfoValue is set to V.

SQL/CLI routines 225

CD 9075-3:200x(E)
6.38 GetInfo

6.39 GetLength

Function

Retrieve the length of the string value represented by a Large Object locator.

Definition

GetLength(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 Locator IN INTEGER,
 StringLength OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-specific con-
dition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”, then an
exception condition is raised: CLI-specific condition — invalid attribute value.

4) Let LL be the Large Object locator value in Locator.

5) If LL is not a valid Large Object locator, then an exception condition is raised: locator exception — invalid
specification.

6) Let TL be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with TL (e.g., a CHARACTER LARGE OBJECT LOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

8) Let SV be the string value that is represented by LL.

9) Case:

a) If SV contains the null value, then

Case:

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null
value, no indicator parameter.

ii) Otherwise:

226 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.39 GetLength

1) IndicatorValue is set to the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscel-
laneous codes used in CLI”.

2) The value of StringLength is implementation-dependent.

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

ii) If TL is CHARACTER LARGE OBJECT, then StringLength is set to the length in characters
of SV.

iii) If TL is BINARY LARGE OBJECT, then StringLength is set to the length in octets of SV.

SQL/CLI routines 227

CD 9075-3:200x(E)
6.39 GetLength

6.40 GetParamData

Function

Retrieve the value of a dynamic output parameter.

Definition

GetParamData (
 StatementHandle IN INTEGER,
 ParameterNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error; otherwise, let P be the SQL-statement that was prepared.

3) If P is not a <call statement>, then an exception condition is raised: CLI-specific condition — function
sequence error.

4) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

5) If N is less than zero, then an exception condition is raised: dynamic SQL error — invalid descriptor count.

6) Let PN be the value of ParameterNumber.

7) If PN is less than 1 (one) or greater than N, then an exception condition is raised: dynamic SQL error —
invalid descriptor index.

8) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of APD for which the
TYPE value is neither ROW, ARRAY, nor MULTISET, then let BPN be the parameter number associated
with such an item descriptor area and let HBPN be the value of MAX(BPN). Otherwise, let HBPN be 0
(zero).

9) Let IDA be the item descriptor area of APD specified by PN. If the value of TYPE of IDA is either ROW,
ARRAY, or MULTISET, or if LEVEL of IDA is greater than 0 (zero), then an exception condition is raised:
dynamic SQL error — invalid descriptor index.

NOTE 44 — GetParamData cannot be called to retrieve the data corresponding to a subordinate descriptor record such as, for
example, from an individual field of a ROW type.

10) Let IDA1 be the item descriptor area of IPD specified by PN.

11) Let PM be the value of PARAMETER_MODE in IDA1.

228 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.40 GetParamData

12) If PM is PARAM MODE IN then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

13) If PN is not greater than HBPN, then

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised: dynamic SQL
error — invalid descriptor index.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an exception
condition is raised: dynamic SQL error — invalid descriptor index.

NOTE 45 — This implementation-defined feature determines whether parameters before the highest bound parameter can
be accessed by GetParamData.

14) If there is a fetched parameter number associated with S, then let FPN be that parameter number; otherwise,
let FPN be zero.

NOTE 46 — “fetched parameter number” is the ParameterNumber value used with the previous invocation (if any) of the Get-
ParamData routine with S. See the General Rules later in this Subclause where this value is set.

15) Case:

a) If FPN is greater than zero and PN is not greater than FPN, then it is implementation-defined whether
an exception condition is raised: dynamic SQL error — invalid descriptor index.

NOTE 47 — This implementation-defined feature determines whether GetParam Data can only access parameters in
ascending parameter number order.

b) If FPN is less than zero, then:

i) Let AFPN be the absolute value of FPN.

ii) Case:

1) If PN is less than AFPN, then it is implementation-defined whether an exception condition
is raised: dynamic SQL error — invalid descriptor index.

NOTE 48 — This implementation-defined feature determines whether GetParamData can only access parameters
in ascending parameter number order.

2) If PN is greater than AFPN, then let FPN be AFPN.

16) Let T be the value of TargetType.

17) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

18) If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) T indicates neither DEFAULT nor APD TYPE and is not one of the code values in Table 8, “Codes
used for application data types in SQL/CLI”.

b) T is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

SQL/CLI routines 229

CD 9075-3:200x(E)
6.40 GetParamData

19) If T does not indicate APD TYPE, then the data type of the <target specification> described by IDA is set
to T.

20) Let IPD be the implementation parameter descriptor associated with S.

21) If the value of the TYPE field of IDA indicates DEFAULT, then:

a) Let PT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
PN-th item descriptor area of IPD for which LEVEL is 0 (zero).

b) The data type, precision, and scale of the <target specification> described by IDA are set to PT, P, and
SC, respectively, for the purposes of this GetParamData invocation only.

22) If IDA is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an
exception condition is raised: dynamic SQL error — using clause does not match target specifications.

23) Let TT be the value of the TYPE field of IDA.

24) Case:

a) If TT indicates CHARACTER, then:

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in Table 7,
“Codes used for implementation data types in SQL/CLI”.

ii) Let CL be the implementation-defined maximum length for a CHARACTER VARYING data
type.

b) Otherwise, let UT be TT and let CL be zero.

25) Case:

a) If FPN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then AFPN becomes the fetched parameter number
associated with S and an exception condition is raised: dynamic SQL error — invalid descriptor
index.

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length, respectively,
associated with FPN and let TV be the result of the <string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

i) Let FL be zero.

ii) Let SDT be the effective data type of the PCN-th <select list> column as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME fields in the PN-th
item descriptor area of IPD. Let SV be the value of the parameter, with data type SDT.

230 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.40 GetParamData

iii) Let TDT be the effective data type of the PN-th <target specification> as represented by the type
UT, the length value CL, and the values of the PRECISION, SCALE, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME fields of IDA.

iv) Case:

1) If TDT is a locator type, then

Case:

A) If SV is not the null value, then a locator L that uniquely identifies SV is generated and
the value of TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

B) Otherwise, the value TV of the PN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the PN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”,
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and is the value TV of the PN-th <target specification>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

C) The Syntax Rules of Subclause 9.19, “Determination of a from-sql function”, in ISO/IEC
9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

SQL/CLI routines 231

CD 9075-3:200x(E)
6.40 GetParamData

Case:

I) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:

1) If FSFPT is compatible with TDT, then the from-sql function TSF is effec-
tively invoked with SV as its input parameter and the <return value> is the
value TV of the CN-th <target specification>.

2) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

II) Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

26) PN becomes the fetched parameter number associated with S.

27) If TV is the null value, then

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

b) Otherwise, StrLen_or_Ind is set to the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscel-
laneous codes used in CLI”, and the value of TargetValue is implementation-dependent.

28) Let OL be the value of BufferLength.

29) If null termination is True for the current SQL-environment, then let NB be the length in octets of a null
terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

30) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined whether or not
an exception condition is raised: data exception — zero-length character string.

B) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Tar-
getValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

2) If TT is BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the General
Rules of Subclause 5.10, “Binary string retrieval”, are applied with TargetValue, TV, OL,
and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

232 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.40 GetParamData

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in octets.

4) Let FL be (FL+OL–NB).

5) If FL is less than DL, then –PN becomes the fetched parameter number associated with the
fetched parameter associated with S and FL, DV and DL become the fetched length, data
value, and data length, respectively, associated with the fetched parameter number.

SQL/CLI routines 233

CD 9075-3:200x(E)
6.40 GetParamData

6.41 GetPosition

Function

Retrieve the starting position of a string value within another string value, where the second string value is
represented by a Large Object locator.

Definition

GetPosition(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 SourceLocator IN INTEGER,
 SearchLocator IN INTEGER,
 SearchLiteral IN ANY,
 SearchLiteralLength IN INTEGER,
 FromPosition IN INTEGER,
 LocatedAt OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-specific con-
dition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”, then an
exception condition is raised: CLI-specific condition — invalid attribute identifier.

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator exception —
invalid specification.

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT LOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

8) Case:

a) If SRCL represents the null value, then

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null
value, no indicator parameter.

234 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.41 GetPosition

ii) Otherwise, IndicatorValue is set to the appropriate 'Code' for SQL NULL DATA in Table 27,
“Miscellaneous codes used in CLI”, the value of all other output arguments is implementation-
dependent, and no further rules of this Subclause are applied.

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

ii) Let SRCV be the actual value that is represented by SRCL.

9) Let SLL be the value of SearchLiteralLength.

10) Case:

a) If SLL is equal to zero, then:

i) Let SCHL be the Large Object locator value in SearchLocator.

ii) If SCHL is not a valid Large Object locator, then an exception condition is raised: locator
exception — invalid specification.

iii) Let SCHT be the actual data type of the Large Object string on the server.

iv) If the value of LocatorType is not consistent with SCHT, then an exception condition is raised:
dynamic SQL error — restricted data type attribute violation.

v) If SCHL represents the null value, then an exception condition is raised: CLI-specific condition
— invalid attribute value.

vi) Let SCHV be the actual value that is represented by SCHL.

b) Otherwise,

Case:

i) If SearchLiteral is a null pointer, then an exception condition is raised: CLI-specific condition
— invalid attribute value.

ii) Otherwise, let SCHV be the value of that literal.

11) Let FP be the value of FromPosition. Let SRCVL be the length of SRCV (in characters if SRCV is a character
string and in octets if SRCV is a binary string).

12) If FP is less than 1 (one) or greater than SRCVL, then an exception condition is raised: CLI-specific condition
— invalid attribute value.

13) If FP is greater than 1 (one), then let SRCV be the value of

SUBSTRING (SRCV FROM FP)

14) Case:

a) If SRCV contains a string MV of contiguous characters (if SRCV is a character string) or contiguous
octets (if SRCV is a binary string) that is the same as the string of characters or octets (as appropriate)
in SCHV then LocatedAt is set to the starting position (in characters or octets, as appropriate) of the
first occurrence of MV within SRCV.

b) Otherwise, LocatedAt is set to 0 (zero).

SQL/CLI routines 235

CD 9075-3:200x(E)
6.41 GetPosition

6.42 GetSessionInfo

Function

Get information about <general value specification>s supported by the implementation.

Definition

GetSessionInfo(
 ConnectionHandle IN INTEGER,
 InfoType IN SMALLINT,
 InfoValue OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is raised:
connection exception — connection does not exist.

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connection”,
are applied with EC as dormant SQL-connection.

4) Let IT be the value of InfoType.

5) If IT is not one of the codes in Table 30, “Codes and data types for session implementation information”,
then an exception condition is raised: CLI-specific condition — invalid information type.

6) Let GVS be the value of <general value specification> in the same row as IT in Table 30, “Codes and data
types for session implementation information”.

7) Let SH be an allocated statement handle on C.

8) Let STMT be the character string:

SELECT UNIQUE GVS

236 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.42 GetSessionInfo

FROM INFORMATION_SCHEMA.TABLES – Any table would do
WHERE 1 = 1 – Any predicate that is TRUE would do

9) V is set to the single column value returned by the implicit invocation of ExecDirect with SH as the value
of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value of TextLength.

10) If any status condition, such as connection failure, is caused by the implicit invocation of ExecDirect, then:

a) The status records returned by ExecDirect on SH are returned on ConnectionHandle.

b) This invocation of GetSessionInfo returns the same return code that was returned by the implicit
invocation of ExecDirect and no further Rules of this Subclause are applied.

11) Let BL be the value of BufferLength.

12) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with InfoValue, V, BL, and
StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

SQL/CLI routines 237

CD 9075-3:200x(E)
6.42 GetSessionInfo

6.43 GetStmtAttr

Function

Get the value of an SQL-statement attribute.

Definition

GetStmtAttr (
 StatementHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 18, “Codes used for statement attributes”, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

4) Case:

a) If A indicates APD_HANDLE, then Value is set to the handle of the current application parameter
descriptor for S.

b) If A indicates ARD_HANDLE, then Value is set to the handle of the current application row descriptor
for S.

c) If A indicates IPD_HANDLE, then Value is set to the handle of the implementation parameter
descriptor associated with S.

d) If A indicates IRD_HANDLE, then Value is set to the handle of the implementation row descriptor
associated with S.

e) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the implementation supports scrollable cursors, then

Case:

1) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, then
Value is set to the code value for NONSCROLLABLE from Table 27, “Miscellaneous codes
used in CLI”.

238 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.43 GetStmtAttr

2) If the value of the CURSOR SCROLLABLE attribute of S is SCROLLABLE, then Value
is set to the code value for SCROLLABLE from Table 27, “Miscellaneous codes used in
CLI”.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

f) If A indicates CURSOR SENSITIVITY, then

Case:

i) If the implementation supports cursor sensitivity, then

Case:

1) If the value of the CURSOR SENSITIVITY attribute of S is ASENSITIVE, then Value is
set to the code value for ASENSITIVE from Table 27, “Miscellaneous codes used in CLI”.

2) If the value of the CURSOR SENSITIVITY attribute of S is INSENSITIVE, then Value is
set to the code value for INSENSITIVE from Table 27, “Miscellaneous codes used in CLI”.

3) If the value of the CURSOR SENSITIVITY attribute of S is SENSITIVE, then Value is set
to the code value for SENSITIVE from Table 27, “Miscellaneous codes used in CLI”.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

g) If A indicates METADATA ID, then

Case:

i) If the METADATA ID attribute for S has been set by the SetStmtAttr routine, then Value is set
to the code value of that attribute from Table 20, “Data types of attributes”.

ii) Otherwise, Value is set to the code value for FALSE from Table 27, “Miscellaneous codes used
in CLI”.

h) If A indicates CURSOR HOLDABLE, then

Case:

i) If the implementation supports cursor holdability, then

Case:

1) If the value of the CURSOR HOLDABLE attribute of S is NONHOLDABLE, then the
Value is set to the code value for NONHOLDABLE from Table 27, “Miscellaneous codes
used in CLI”.

2) If the value of the CURSOR HOLDABLE attribute of S is HOLDABLE, then the Value is
set to the code value for HOLDABLE from Table 27, “Miscellaneous codes used in CLI”.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

i) If A indicates CURRENT OF POSITION, then

SQL/CLI routines 239

CD 9075-3:200x(E)
6.43 GetStmtAttr

Case:

i) If there is no fetched rowset associated with S, then an exception condition is raised: CLI-specific
condition — invalid cursor state.

ii) Otherwise, Value is set to the current position within the fetched rowset associated with S.

j) If A indicates NEST DESCRIPTOR, then

Case:

i) If the NEST DESCRIPTOR attribute for S has been set by the SetStmtAttr routine, then Value
is set to the code value of that attribute from Table 20, “Data types of attributes”.

ii) Otherwise, VALUE is set to the code value for FALSE from Table 27, “Miscellaneous codes
used in CLI”.

5) If A specifies an implementation-defined statement attribute, then

Case:

a) If the data type for the statement attribute is specified in Table 20, “Data types of attributes”, as
INTEGER, then Value is set to the value of the implementation-defined statement attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined statement attribute.

iii) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Value, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

240 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.43 GetStmtAttr

6.44 GetSubString

Function

Either retrieve a portion of a string value that is represented by a Large Object locator or create a Large Object
value at the server and retrieve a Large Object locator for that value.

Definition

GetSubString(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 SourceLocator IN INTEGER,
 FromPosition IN INTEGER,
 ForLength IN INTEGER,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associated with S, then an exception condition is raised: CLI-specific con-
dition — function sequence error.

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”, then an
exception condition is raised: CLI-specific condition — invalid attribute value.

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator exception —
invalid specification.

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT LOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

8) Let TT be the value of TargetType.

9) If TT is not equal to one of the values for CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, BINARY LARGE OBJECT, CHARACTER LARGE OBJECT LOCATOR, or
BINARY LARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”,
then an exception condition is raised: CLI-specific condition — invalid attribute value.

10) If SRCL is the null value, then

SQL/CLI routines 241

CD 9075-3:200x(E)
6.44 GetSubString

Case:

a) If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

b) Otherwise, IndicatorValue is set to the value of the 'Code' for SQL NULL DATA from Table 27,
“Miscellaneous codes used in CLI”, the values of all other output arguments are implementation-
dependent, and no further rules of this Subclause are applied.

11) Let OL be the value of BufferLength.

12) If SRCL is not the null value, then:

a) IndicatorValue is set to 0 (zero).

b) Let SRCV be the large object value that is represented by SRCL.

c) If SRCV is a character string, then let SRCVL be the length of SRCV in characters; if SRCV is a binary
string, then let SRCVL be the length of SRCV in octets.

d) Let FP be the value of FromPosition and let FL be the value of ForLength.

e) If any of the following is true, then an exception condition is raised: CLI-specific condition — invalid
attribute value.

i) FP is less than 1 (one).

ii) FL is less than 1 (one).

iii) FP+FL–1 is greater than SRCVL.

f) Let RV be the value of the string that starts at position FP and ends at position FP+FL–1 in SRCV
(where the positions are in characters or octets, as appropriate).

g) Let RVL be the number of octets in RV.

h) Case:

i) If TT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV is a zero-length character string, then it is implementation-defined whether or not an
exception condition is raised: data exception — zero-length character string.

2) The General Rules of Subclause 5.9, “Character string retrieval”, are applied with Target-
Value, RV, OL, and RVL as TARGET, VALUE, OCTET LENGTH and RETURNED OCTET
LENGTH, respectively.

ii) If TT indicates BINARY, BINARY VARYING, BINARY LARGE OBJECT, then the General
Rules of Subclause 5.10, “Binary string retrieval”, are applied with TargetValue, RV, OL, and
RVL as TARGET, VALUE, OCTET LENGTH and RETURNED OCTET LENGTH, respectively.

iii) Otherwise, set TargetValue to the value of a Large Object locator that represents the value RV
at the server.

242 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.44 GetSubString

6.45 GetTypeInfo

Function

Get information about one or all of the predefined data types supported by the implementation.

Definition

GetTypeInfo (
 StatementHandle IN INTEGER,
 DataType IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let D be the value of DataType.

4) If D is not the code value corresponding to ALL TYPES in Table 27, “Miscellaneous codes used in CLI”,
and is not one of the code values in Table 33, “Codes used for concise data types”, then an exception con-
dition is raised: CLI-specific condition — invalid data type.

5) Let C be the allocated SQL-connection with which S is associated.

6) Let EC be the established SQL-connection associated with C and let SS be the SQL-server associated with
EC.

7) Let TYPE_INFO be a table, with a definition and description as specified below, that contains a row for
each predefined data type supported by SS. For all supported predefined data types for which more than
one name is supported, it is implementation-defined whether TYPE_INFO contains a single row or a row
for each supported name.

CREATE TABLE TYPE_INFO (
 TYPE_NAME CHARACTER VARYING(128) NOT NULL

PRIMARY KEY,
 DATA_TYPE SMALLINT NOT NULL,
 COLUMN_SIZE INTEGER,
 LITERAL_PREFIX CHARACTER VARYING(128),
 LITERAL_SUFFIX CHARACTER VARYING(128),
 CREATE_PARAMS CHARACTER VARYING(128)

CHARACTER SET SQL_TEXT,
NULLABLE SMALLINT NOT NULL

CHECK (NULLABLE IN (0, 1, 2)),
 CASE_SENSITIVE SMALLINT NOT NULL

CHECK (CASE_SENSITIVE IN (0, 1)),
 SEARCHABLE SMALLINT NOT NULL

CHECK (SEARCHABLE IN (0, 1, 2, 3)),
 UNSIGNED_ATTRIBUTE SMALLINT

CHECK (UNSIGNED_ATTRIBUTE IN (O, 1)

SQL/CLI routines 243

CD 9075-3:200x(E)
6.45 GetTypeInfo

OR UNSIGNED_ATTRIBUTE IS NULL),
 FIXED_PREC_SCALE SMALLINT NOT NULL

CHECK (FIXED_PREC_SCALE IN (O, 1)),
 AUTO_UNIQUE_VALUE SMALLINT NOT NULL

CHECK (AUTO_UNIQUE_VALUE IN (O, 1)),
 LOCAL_TYPE_NAME CHARACTER VARYING(128)

CHARACTER SET SQL_TEXT,
 MINIMUM_SCALE INTEGER,
 MAXIMUM_SCALE INTEGER,
 SQL_DATA_TYPE SMALLINT NOT NULL,
 SQL_DATETIME_SUB SMALLINT

CHECK (SQL_DATETIME_SUB IN
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

OR SQL_DATETIME_SUB IS NULL),
 NUM_PREC_RADIX INTEGER,
 INTERVAL_PRECISION SMALLINT)

8) The description of the table TYPE_INFO is:

a) The value of TYPE_NAME is the name of the data type. If multiple names are supported for this data
type and TYPE_INFO contains only a single row for this data type, then it is implementation-defined
which of the names is in TYPE_NAME.

b) The value of DATA_TYPE is the code value for the predefined data type as defined in Table 33, “Codes
used for concise data types”.

c) The value of COLUMN_SIZE is:

i) The null value if the data type has neither a length nor a precision.

ii) The maximum length in characters for a character string type.

iii) The maximum or fixed precision, as appropriate, for a numeric data type.

iv) The maximum or fixed length in positions, as appropriate, for a datetime or interval data type.

v) An implementation-defined value for an implementation-defined data type that has a length or
a precision.

d) The value of LITERAL_PREFIX is the character string that shall precede the data type value when a
<literal> of this data type is specified. The value of LITERAL_PREFIX is the null value if no such
string is required.

e) The value of LITERAL_SUFFIX is the character string that shall follow the data type value when a
<literal> of this data type is specified. The value of LITERAL_SUFFIX is the null value if no such
string is required.

f) The value of CREATE_PARAMS is a comma-separated list of specifiable attributes for the data type
in the order in which the attributes may be specified. The attributes <length>, <precision>, <scale>,
and <time fractional seconds precision> appear in the list as LENGTH, PRECISION, SCALE, and
PRECISION, respectively. The appearance of attributes in implementation-defined data types is
implementation-defined.

g) The value of NULLABLE is 1 (one).

h) The value of CASE_SENSITIVE is 1 (one) if the data type is a character string type and the default
collation for its implementation-defined implicit character set would result in a case sensitive compar-

244 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.45 GetTypeInfo

ison when two values with this data type are compared. Otherwise, the value of CASE_SENSITIVE
is 0 (zero).

i) Refer to the <comparison predicate>, <between predicate>, <in predicate>, <null predicate>, <quantified
comparison predicate>, and <match predicate> as the basic predicates. If the data type can be the data
type of an operand in the <like predicate>, then let V1 be 1 (one); otherwise let V1 be 0 (zero). If the
data type can be the data type of a column of a <row value constructor predicand> immediately contained
in a basic predicate, then let V2 be 2; otherwise let V2 be 0 (zero). The value of SEARCHABLE is
(V1+V2).

j) The value of UNSIGNED_ATTRIBUTE is

Case:

i) If the data type is unsigned, then 1 (one).

ii) If the data type is signed, then 0 (zero).

iii) If a sign is not applicable to the data type, then the null value.

k) The value of FIXED_PREC_SCALE is

Case:

i) If the data type is an exact numeric with a fixed precision and scale, then 1 (one).

ii) Otherwise, 0 (zero).

l) The value of AUTO_UNIQUE_VALUE is

Case:

i) If a column of this data type is set to a value unique among all rows of that column when a row
is inserted, then 1 (one).

ii) Otherwise, 0 (zero).

m) The value of LOCAL_TYPE_NAME is an implementation-defined localized representation of the
name of the data type, intended primarily for display purposes. The value of LOCAL_TYPE_NAME
is the null value if a localized representation is not supported.

n) The value of MINIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The minimum value of the scale for a data type that has a scale.

iii) The minimum value of the fractional seconds precision for a data type that has a fractional seconds
precision.

o) The value of MAXIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The maximum value of the scale for a data type that has a scale.

iii) The maximum value of the fractional seconds precision for a data type that has a fractional
seconds precision.

SQL/CLI routines 245

CD 9075-3:200x(E)
6.45 GetTypeInfo

p) The value of SQL_DATA_TYPE is the code value for the predefined data type as defined in Table 7,
“Codes used for implementation data types in SQL/CLI”.

q) The value of SQL_DATETIME_SUB is

Case:

i) If the data type is a datetime type, then the code value for the datetime type as defined in Table 9,
“Codes associated with datetime data types in SQL/CLI”.

ii) If the data type is an interval type, then the code value for the interval type as defined in Table 10,
“Codes associated with <interval qualifier> in SQL/CLI”.

iii) Otherwise, the null value.

r) The value of NUM_PREC_RADIX is

Case:

i) If the value of PRECISION is the value of a precision, then the radix of that precision.

ii) Otherwise, the null value.

s) The value of SQL_INTERVAL_PRECISION is

Case:

i) If the data type is an interval type, then <interval leading field precision>.

ii) Otherwise, the null value.

9) Case:

a) If D is the code value corresponding to ALL TYPES in Table 27, “Miscellaneous codes used in CLI”,
then let P be the character string

SELECT *
FROM TYPE_INFO
ORDER BY DATA_TYPE

b) Otherwise, let P be the character string

SELECT *
FROM TYPE_INFO
WHERE DATA_TYPE = d

10) ExecDirect is implicitly invoked with S as the value of StatementHandle, P as the value of StatementText,
and the length of P as the value of TextLength.

246 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.45 GetTypeInfo

6.46 MoreResults

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize processing
for those result sets.

Definition

MoreResults (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then a completion condition is raised: no data —
no additional result sets returned.

3) Case:

a) If there is no cursor associated with S and there exists an implementation-defined capability to support
that situation, then implementation-defined rules are evaluated and no further General Rules of this
Subclause are evaluated.

b) If there is no cursor associated with S, then an exception condition is raised: CLI-specific condition —
function sequence error.

c) Otherwise, let CR be the cursor associated with S.

4) If CR is currently open, then:

a) CR is placed in the closed state.

b) Any fetched row associated with S is removed from association with S.

5) Case:

a) If there is another result set that was returned for the executed statement associated with S, then:

i) Let SS be the <dynamic select statement> or <dynamic single row select statement> that was
used to create the result set.

ii) The General Rules of Subclause 5.5, “Implicit DESCRIBE USING clause”, are applied with SS
and S as SOURCE and ALLOCATED STATEMENT, respectively.

iii) CR is opened on that result set and positioned before the first row.

iv) A completion condition is raised: successful completion.

b) Otherwise, a completion condition is raised: no data — no additional result sets returned.

SQL/CLI routines 247

CD 9075-3:200x(E)
6.46 MoreResults

6.47 NextResult

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize processing
for the next result set on a separate statement handle.

Definition

NextResult (
 StatementHandle1 IN INTEGER,
 StatementHandle2 IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S1 be the allocated SQL-statement identified by StatementHandle1.

2) If there is no executed SQL-statement associated with S1, then a completion condition is raised: no data
— no additional result sets returned.

3) Let S2 be the allocated SQL-statement identified by StatementHandle2.

4) If there is a prepared statement associated with S2, then an exception condition is raised: CLI-specific
condition — function sequence error.

5) Case:

a) If there is another result set that was returned for the executed statement associated with S1, then:

i) A cursor CR is associated with S2.

ii) Let SS be the <dynamic select statement> or <dynamic single row select statement> that was
used to create the result set.

iii) The General Rules of Subclause 5.5, “Implicit DESCRIBE USING clause”, are applied with SS
and S2 as SOURCE and ALLOCATED STATEMENT, respectively.

iv) CR is opened on that result set and positioned before the first row.

v) A completion condition is raised: successful completion.

b) Otherwise, a completion condition is raised: no data — no additional result sets returned.

248 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.47 NextResult

6.48 NumResultCols

Function

Get the number of result columns.

Definition

NumResultCols (
 StatementHandle IN INTEGER,
 ColumnCount OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no prepared or executed statement associated with S, then an exception condition is raised:
CLI-specific condition — function sequence error.

b) Otherwise, let D be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of D.

3) ColumnCount is set to N.

SQL/CLI routines 249

CD 9075-3:200x(E)
6.48 NumResultCols

6.49 ParamData

Function

Process a deferred parameter value.

Definition

ParamData (
 StatementHandle IN INTEGER,
 Value OUT ANY)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

4) For each of the first N item descriptor areas NIDA in APD:

a) If the OCTET_LENGTH_POINTER field of NIDA has the same non-zero value as the INDICA-
TOR_POINTER field of IDA, then SHARE is true for NIDA; otherwise, SHARE is false for NIDA.
Case:

i) If SHARE is true for NIDA and the value of the commonly addressed host variable is the
appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then
NULL is true for NIDA.

ii) If SHARE is false for NIDA, INDICATOR_POINTER is not zero, and the value of the host
variable addressed by INDICATOR_POINTER is the appropriate 'Code' for SQL NULL DATA
in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for NIDA.

iii) Otherwise, NULL is false for NIDA.

b) If NULL is false for NIDA, OCTET_LENGTH_POINTER is not 0 (zero), and the value of the host
variable addressed by OCTET_LENGTH_POINTER is the appropriate 'Code' for SQL NULL DATA
in Table 27, “Miscellaneous codes used in CLI”, then DEFERRED is true for NIDA; otherwise,
DEFERRED is false for NIDA.

5) For each item descriptor area for which DEFERRED is true in the first N item descriptor areas of APD for
which LEVEL is 0 (zero), refer to the corresponding <dynamic parameter specification> value as a deferred
parameter value.

250 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.49 ParamData

6) Let IDA be the DPN-th item descriptor area of APD and let PT and DP be the values of the TYPE and
DATA_POINTER fields, respectively, of IDA.

7) If there is no parameter value associated with DPN, then

Case:

a) If there is a DATA_POINTER value associated with DPN, then an exception condition is raised: CLI-
specific condition — function sequence error.

b) Otherwise:

i) Value is set to DP.

ii) DP becomes the DATA_POINTER value associated with DPN.

iii) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.

8) Let IPD be the implementation parameter descriptor associated with S.

9) Let C be the allocated SQL-connection with which S is associated.

10) Let V be the parameter value associated with DPN.

11) Case:

a) If V is not the null value, then:

i) Case:

1) If PT indicates CHARACTER, then:

A) Let LO be the parameter length associated with DPN and let L be the number of charac-
ters of V wholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined maximum length value for the CHARACTER
data type, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

2) If PT indicates CHARACTER LARGE OBJECT, then:

A) Let LO be the parameter length associated with DPN and let L be the number of charac-
ters of V wholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined maximum length value for the CHARACTER
LARGE OBJECT data type, then an exception condition is raised: CLI-specific condition
— invalid string length or buffer length.

3) If PT indicates BINARY, then:

A) Let LO be the parameter length associated with DPN and let L be the minimum of LO
and the length of V in octets.

B) If L exceeds the implementation-defined maximum length value for the BINARY data
type, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

4) If PT indicates BINARY VARYING, then:

SQL/CLI routines 251

CD 9075-3:200x(E)
6.49 ParamData

Let LO be the parameter length associated with DPN and let L be the minimum of LO
and the length of V in octets.

A)

B) If L exceeds the implementation-defined maximum length value for the BINARY
VARYING data type, then an exception condition is raised: CLI-specific condition —
invalid string length or buffer length.

5) If PT indicates BINARY LARGE OBJECT, then:

A) Let LO be the parameter length associated with DPN and let L be the minimum of LO
and the length of V in octets.

B) If L exceeds the implementation-defined maximum length value for the BINARY
LARGE OBJECT data type, then an exception condition is raised: CLI-specific condition
— invalid string length or buffer length.

6) Otherwise, let L be zero.

ii) Let SV be V with effective data type SDT as represented by the length value L and by the values
of the TYPE, PRECISION, and SCALE fields of IDA.

b) Otherwise, let SV be the null value.

12) Let TDT be the effective data type of the DPN-th <dynamic parameter specification> as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATE-
TIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields
of the DPN-th item descriptor area of IPD.

13) Let SDT be the effective data type of the DPN-th parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECI-
SION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields
in the corresponding item descriptor area of APD.

14) Case:

a) If SDT is a locator type, then let TV be the value SV.

b) If SDT and TDT are predefined types, then

i) Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC
9075-2, and there is an implementation-defined conversion from type SDT to type TDT,
then that implementation-defined conversion is effectively performed, converting SV to type
TDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

252 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.49 ParamData

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, then an exception condition is raised in accordance with the General
Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC 9075-2.

C) Let TV be the value obtained, with data type TDT, by effectively performing the <cast
specification>

CAST (SV AS TDT)

NOTE 49 — It is implementation-dependent whether the establishment of TV occurs at this time or during
the preceding invocation of PutData.

ii) Let UDT be the effective data type of the actual DPN-th <dynamic parameter specification>,
defined to be the data type represented by the values of the TYPE, LENGTH, PRECISION,
SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHAR-
ACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields that would automatically
be set in the DPN-th item descriptor area of IPD if POPULATE IPD was True for C.

iii) Case:

1) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC
9075-2, and there is an implementation-defined conversion from type SDT to type UDT,
then that implementation-defined conversion is effectively performed, converting SV to type
UDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) If the <cast specification>

CAST (TV AS UDT)

SQL/CLI routines 253

CD 9075-3:200x(E)
6.49 ParamData

does not conform to the General Rules of Subclause 6.12, “<cast specification>”, in
ISO/IEC 9075-2, then an exception condition is raised in accordance with the General
Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC 9075-2.

C) The <cast specification>

CAST (TV AS UDT)

is effectively performed and is the value of the DPN-th dynamic parameter.

15) Let PN be the parameter number associated with a deferred parameter value and let HPN be the value of
MAX(PN).

16) If DPN is not equal to HPN, then:

a) Let NPN be the lowest value of PN for which DPN < NPN ≤ HPN.

b) Let DP be the value of the DATA_POINTER field of the NPN-th item descriptor area of APD for
which LEVEL is 0 (zero).

c) NPN becomes the deferred parameter number associated with S and DP becomes the DATA_POINTER
value associated with the deferred parameter number.

d) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.

17) If DPN is equal to HPN, then:

a) DPN is removed from association with S.

b) Case:

i) If there is a select source associated with S, then:

1) Let SS be the select source associated with S.

2) If the value of the CURSOR SCROLLABLE attribute of S is SCROLLABLE, then let CT
be 'SCROLL'; otherwise, let CT be an empty string.

3) Case:

A) If the value of the CURSOR SENSITIVITY attribute of S is INSENSITIVE, then let
CS be 'INSENSITIVE'.

B) If the value of the CURSOR SENSITIVITY attribute of S is SENSITIVE, then let CS
be 'SENSITIVE'.

C) Otherwise, let CS be 'ASENSITIVE'.

4) If the value of the CURSOR HOLDABLE attribute of S is HOLDABLE, then let CH be
'WITH HOLD'; otherwise, let CH be an empty string.

5) Let CN be the name of the cursor associated with S and let CR be the following <declare
cursor>:

DECLARE CN CS CT CURSOR CH
FOR SS

6) A copy of SS is effectively created in which:

254 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.49 ParamData

Each <dynamic parameter specification> is replaced by the value of the corresponding
dynamic parameter.

A)

B) Each <value specification> generally contained in SS that is CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_DEFAULT_TRANSFORM_GROUP, or CUR-
RENT_TRANFORM_GROUP_FOR_TYPE <path-resolved user-defined type name>
is replaced by the value resulting from evaluation of CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_DEFAULT_TRANSFORM_GROUP, or CUR-
RENT_TRANFORM_GROUP_FOR_TYPE <path-resolved user-defined type name>,
respectively, with all such evaluations effectively done at the same instant in time.

C) Each <datetime value function> generally contained in SS is replaced by the value
resulting from evaluation of that <datetime value function>, with all evaluations effec-
tively done at the same instant in time.

D) Each <value specification> generally contained in S that is CURRENT_PATH is replaced
by the value resulting from evaluation of CURRENT_PATH, with all such evaluations
effectively done at the same instant in time.

7) Let T be the table specified by the copy of SS.

8) A table descriptor for T is effectively created.

9) The General Rules of Subclause 14.1, “<declare cursor>”, in ISO/IEC 9075-2, are applied
to CR.

10) Case:

A) If CR specifies INSENSITIVE, then a copy of T is effectively created and the cursor
identified by CN is placed in the open state and its position is before the first row of the
copy of T.

B) Otherwise, the cursor identified by CN is placed in the open state and its position is
before the first row of T.

11) If CR specifies INSENSITIVE, and the implementation is unable to guarantee that significant
changes will be invisible through CR during the SQL-transaction in which CR is opened
and every subsequent SQL-transaction during which it may be held open, then an exception
condition is raised: cursor sensitivity exception — request rejected.

12) If CR specifies SENSITIVE, and the implementation is unable to guarantee that significant
changes will be visible through CR during the SQL-transaction in which CR is opened, then
an exception condition is raised: cursor sensitivity exception — request rejected.

NOTE 50 — The visibility of significant changes through a sensitive holdable cursor during a subsequent SQL-
transaction is implementation-defined.

13) Whether an implementation is able to disallow significant changes that would not be visible
through a currently open cursor is implementation-defined.

ii) Otherwise:

1) Let SS be the statement source associated with S.

2) SS is removed from association with S.

SQL/CLI routines 255

CD 9075-3:200x(E)
6.49 ParamData

3) Case:

A) If SS is a <preparable dynamic delete statement: positioned>, then:

I) Let CR be the cursor referenced by SS.

II) The General Rules in Subclause 20.22, “<preparable dynamic delete statement:
positioned>”, in ISO/IEC 9075-2 are applied to SS.

III) If the execution of SS deleted the current row of CR, then the effect on the fetched
row, if any, associated with the allocated SQL-statement under which that current
row was established, is implementation-defined.

B) If SS is a <preparable dynamic update statement: positioned>, then:

I) Let CR be the cursor referenced by SS.

II) All the General Rules in Subclause 20.24, “<preparable dynamic update statement:
positioned>”, in ISO/IEC 9075-2 apply to SS.

III) If the execution of SS updated the current row of CR, then the effect on the fetched
row, if any, associated with the allocated SQL-statement under which that current
row was established, is implementation-defined.

C) Otherwise, the results of the execution are the same as if the statement were contained
in an <externally-invoked procedure> and executed; these are described in
Subclause 10.4, “<routine invocation>”, in ISO/IEC 9075-2.

4) If SS is a <call statement>, then the General Rules of Subclause 5.7, “Implicit CALL USING
clause”, are applied with SS and S as SOURCE and ALLOCATED STATEMENT, respectively.

c) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

d) R becomes the row count associated with S.

e) If P executed successfully, then any executed statement associated with S is destroyed and SS becomes
the executed statement associated with S.

256 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.49 ParamData

6.50 Prepare

Function

Prepare a statement.

Definition

Prepare (
 StatementHandle IN INTEGER,
 StatementText IN CHARACTER(L),
 TextLength IN INTEGER)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let TL be the value of TextLength.

4) Case:

a) If TL is not negative, then let L be TL.

b) If TL indicates NULL TERMINATED, then let L be the number of octets of StatementText that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

b) Otherwise, let P be the first L octets of StatementText.

6) If P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update statement:
positioned>, then let CN be the cursor name referenced by P. Let C be the allocated SQL-connection with
which S is associated. If CN is not the name of a cursor associated with another allocated SQL-statement
associated with C, then an exception condition is raised: invalid cursor name.

7) If one or more of the following are true, then an exception condition is raised: syntax error or access rule
violation.

a) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable statement> or P is
a <start transaction statement>, a <commit statement>, a <rollback statement>, or a <release savepoint
statement>.

SQL/CLI routines 257

CD 9075-3:200x(E)
6.50 Prepare

NOTE 51 — See Table 32, “SQL-statement codes”, in ISO/IEC 9075-2 for the list of <preparable statement>s. Other parts
of ISO/IEC 9075 may have corresponding tables that define additional codes representing statements defined by those parts
of ISO/IEC 9075.

b) P contains a <simple comment>.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined by the
rules specified in Subclause 20.6, “<prepare statement>”, in ISO/IEC 9075-2.

8) The data type of any <dynamic parameter specification> contained in P is determined by the rules specified
in Subclause 20.6, “<prepare statement>”, in ISO/IEC 9075-2.

9) Let DTGN be the default transform group name and TFL be the list of user-defined type name—transform
group name pairs used to identify the group of transform functions for every user-defined type that is ref-
erenced in P. DTGN and TFL are not affected by the execution of a <set transform group statement> after
P is prepared.

10) The following objects associated with S are destroyed:

a) Any prepared statement.

b) Any cursor.

c) Any select source.

d) Any executed statement.

If a cursor associated with S is destroyed, then so are any prepared statements that reference that cursor.

11) P is prepared and the prepared statement is associated with S.

12) If P is a <dynamic select statement> or a <dynamic single row select statement>, then:

a) P becomes the select source associated with S.

b) If there is no cursor name associated with S, then a unique implementation-dependent name that has
the prefix 'SQLCUR' or the prefix 'SQL_CUR' becomes the cursor name associated with S.

13) The General Rules of Subclause 5.5, “Implicit DESCRIBE USING clause”, are applied with SS and S as
SOURCE and ALLOCATED STATEMENT, respectively.

14) The validity of a prepared statement in an SQL-transaction different from the one in which the statement
was prepared is implementation-dependent.

258 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.50 Prepare

6.51 PrimaryKeys

Function

Return a result set that contains a list of the column names that comprise the primary key for a single specified
table stored in the information schemas of the connected data source.

Definition

PrimaryKeys (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, and L3 has a maximum value equal to the implementation-defined maximum length of
a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let PRIMARY_KEYS_QUERY be a table, with the definition:

CREATE TABLE PRIMARY_KEYS_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 ORDINAL_POSITION SMALLINT NOT NULL,
 PK_NAME CHARACTER VARYING(128))

6) Let PKS represent the set of rows in SS's Information Schema TABLE_CONSTRAINTS view where the
value of CONSTRAINT_TYPE is 'PRIMARY KEY'.

7) Let PK_COLS represent the set of rows that define the columns within an individual primary key row in
PKS. These rows are formed by a natural inner join on the values in the CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns between a row in PKS and the matching
row or rows in SS's Information Schema KEY_COLUMN_USAGE view.

8) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

SQL/CLI routines 259

CD 9075-3:200x(E)
6.51 PrimaryKeys

9) PRIMARY_KEYS_QUERY contains a row for each row in PKS_COLS where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

b) Case:

i) If the value of SUP is 1 (one), then PRIMARY_KEYS_QUERY contains a row for each column
of the primary key for a specific table in SS's Information Schema TABLE_CONSTRAINTS
view.

ii) Otherwise, PRIMARY_KEYS_QUERY contains a row for each column of the primary key for a
specific table in SS's Information Schema TABLE_CONSTRAINTS view in accordance with
implementation-defined authorization criteria.

10) For each row of PRIMARY_KEYS_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is set to the null value; oth-
erwise, the value of TABLE_CAT in PRIMARY_KEYS_QUERY is the value of the TABLE_CATALOG
column in PKS.

b) The value of TABLE_SCHEM in PRIMARY_KEYS_QUERY is the value of the TABLE_SCHEMA
column in PKS.

c) The value of TABLE_NAME in PRIMARY_KEYS_QUERY is the value of the TABLE_NAME column
in PKS.

d) The value of COLUMN_NAME in PRIMARY_KEYS_QUERY is the value of the COLUMN_NAME
column in PKS_COLS.

e) The value of ORDINAL_POSITION in PRIMARY_KEYS_QUERY is the value of the ORDINAL_POSI-
TION column in PKS_COLS.

f) The value of PK_NAME in PRIMARY_KEYS_QUERY is the value of the CONSTRAINT_NAME
column in PKS.

11) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3, respectively.

12) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and TableName,
respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, Y, then an exception condition is raised: CLI-
specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid
use of null pointer.

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid use
of null pointer.

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

260 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.51 PrimaryKeys

If NL1 is not negative, then let L be NL1.a)

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

SQL/CLI routines 261

CD 9075-3:200x(E)
6.51 PrimaryKeys

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise,

i) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

262 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.51 PrimaryKeys

ii) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM = 'SCHVAL' AND

iii) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME = 'TBLVAL' AND

20) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

21) Let STMT be the character string:

SELECT *
FROM PRIMARY_KEYS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

22) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

SQL/CLI routines 263

CD 9075-3:200x(E)
6.51 PrimaryKeys

6.52 PutData

Function

Provide a deferred parameter value.

Definition

PutData (
 StatementHandle IN INTEGER,
 Data IN ANY,
 StrLen_or_Ind IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is raised: CLI-
specific condition — function sequence error.

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) If there is no DATA_POINTER value associated with DPN, then an exception condition is raised: CLI-
specific condition — function sequence error.

4) Let APD be the current application parameter descriptor for S.

5) Let PT be the value of the TYPE field of the DPN-th item descriptor area of APD for which LEVEL is 0
(zero).

6) Let IV be the value of StrLen_or_Ind.

7) If there is a parameter value associated with DPN and PT does not indicate CHARACTER, CHARACTER
LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then an exception is
raised: CLI-specific condition — non-string data cannot be sent in pieces.

8) Case:

a) If IV is the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”,
then let V be the null value.

b) If PT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) If IV indicates NULL TERMINATED, then let L be the number of octets in the characters
of Data that precede the implementation-defined null character that terminates a C character
string.

264 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.52 PutData

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

ii) Let V be the first L octets of Data.

c) If PT indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

ii) Let V be the first L octets of Data.

d) Otherwise, let V be the value of Data.

9) If V is not a valid value of the data type indicated by PT, then an exception condition is raised: dynamic
SQL error — using clause does not match dynamic parameter specifications.

10) If there is no parameter value associated with DPN, then:

a) V becomes the parameter value associated with DPN.

b) If V is not the null value and PT indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, or BINARY LARGE OBJECT, then L becomes the parameter length associated
with DPN.

11) If there is a parameter value associated with DPN, then

Case:

a) If V is the null value, then:

i) DPN is removed from association with S.

ii) Any statement source associated with S is removed from association with S.

iii) An exception condition is raised: CLI-specific condition — attempt to concatenate a null value.

b) Otherwise:

i) Let PV be the parameter value associated with DPN.

ii) Case:

1) If PV is the null value, then:

A) DPN is removed from association with S.

B) Any statement source associated with S is removed from association with S.

C) An exception condition is raised: CLI-specific condition — attempt to concatenate a
null value.

2) Otherwise:

A) Let PL be the parameter length associated with DPN.

B) Let NV be the result of the <string value function>

SQL/CLI routines 265

CD 9075-3:200x(E)
6.52 PutData

PV || V

C) NV becomes the parameter value associated with DPN and (PL+L) becomes the
parameter length associated with DPN.

266 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.52 PutData

6.53 RowCount

Function

Get the row count.

Definition

RowCount (
 StatementHandle IN INTEGER,
 RowCount OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S, then an exception condition is raised: CLI-specific
condition — function sequence error.

3) RowCount is set to the value of the row count associated with S.

SQL/CLI routines 267

CD 9075-3:200x(E)
6.53 RowCount

6.54 SetConnectAttr

Function

Set the value of an SQL-connection attribute.

Definition

SetConnectAttr(
 ConnectionHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandle does not identify an allocated SQL-connection, then an exception condition is
raised: CLI-specific condition — invalid handle.

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 17, “Codes used for connection attributes”, or if A is one of the
code values in Table 17, “Codes used for connection attributes”, but the row that contains A contains 'No'
in the 'May be set' column, then an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

4) If A indicates SAVEPOINT NAME, then:

a) Let SL be the value of StringLength.

b) Case:

i) If SL is not negative, then let L be SL.

ii) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that precede
the implementation-defined null character that terminates a C character string.

iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

c) The SAVEPOINT NAME attribute of C is set to the first L octets of Value.

5) If A specifies an implementation-defined connection attribute, then

268 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.54 SetConnectAttr

Case:

a) If the data type for the connection attribute is specified as INTEGER in Table 20, “Data types of
attributes”, then the connection attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that
precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

iii) The connection attribute is set to the first L octets of Value.

SQL/CLI routines 269

CD 9075-3:200x(E)
6.54 SetConnectAttr

6.55 SetCursorName

Function

Set a cursor name.

Definition

SetCursorName (
 StatementHandle IN INTEGER,
 CursorName IN CHARACTER(L),
 NameLength IN SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let NL be the value of NameLength.

4) Case:

a) If NL is not negative, then let L be NL.

b) If NL indicates NULL TERMINATED, then let L be the number of octets of CursorName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

b) Otherwise, let N be the number of whole characters in the first L octets of CursorName and let NO be

the number of octets occupied by those N characters. If NO ≠ L, then an exception condition is raised:
invalid cursor name; otherwise, let CV be the first L octets of CursorName and let TCN be the value
of

TRIM (BOTH ' ' FROM 'CV')

6) Let ML be the maximum length in characters allowed for an <identifier> as specified in the Syntax Rules
of Subclause 5.4, “Names and identifiers”, in ISO/IEC 9075-2, and let TCNL be the length in characters
of TCN.

7) Case:

270 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.55 SetCursorName

If TCNL is greater than ML, then CN is set to the first ML characters of TCN and a completion condition
is raised: warning — string data, right truncation.

a)

b) Otherwise, CN is set to TCN.

8) If CN does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid cursor name.

9) Let C be the allocated SQL-connection with which S is associated and let SC be the <search condition>:

CN LIKE 'SQL_CUR%' ESCAPE '\' OR CN LIKE 'SQLCUR%'

If SC is True or if CN is identical to the value of any cursor name associated with an allocated SQL-statement
associated with C, then an exception condition is raised: invalid cursor name.

10) CN becomes the cursor name associated with S.

SQL/CLI routines 271

CD 9075-3:200x(E)
6.55 SetCursorName

6.56 SetDescField

Function

Set a field in a CLI descriptor area.

Definition

SetDescField (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 Value IN ANY,
 BufferLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of the
COUNT field of D.

2) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to D as the DESCRIPTOR
AREA.

3) Let FI be the value of FieldIdentifier.

4) If FI is not one of the code values in Table 21, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

5) Case:

a) If the ALLOC_TYPE field of descriptor D is USER and D is not being used as the current ARD or
current APD of any statement handle, then let DT be ARD.

b) Otherwise, let DT be the type of the descriptor D.

6) Let MBS be the value of the May Be Set column in the row of Table 22, “Ability to set SQL/CLI descriptor
fields”, that contains FI and in the column that contains the descriptor type DT.

7) If MBS is 'No', then an exception condition is raised: CLI-specific condition — invalid descriptor field
identifier.

8) Let RN be the value of RecordNumber.

9) Let TYPE be the value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

10) If TYPE is 'ITEM' and RN is less than 1 (one), then an exception condition is raised: dynamic SQL error
— invalid descriptor index.

11) Let IDA be the item descriptor area of D specified by RN.

272 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.56 SetDescField

12) If an exception condition is raised in any of the following General Rules, then all fields of IDA for which
specific values were provided in the invocation of SetDescField are set to implementation-dependent values
and the value of COUNT for D is unchanged.

13) Information is set in D:

Case:

a) If FI indicates COUNT, then

Case:

i) If the memory requirements to manage the CLI descriptor area cannot be satisfied, then an
exception condition is raised: CLI-specific condition — memory allocation error.

ii) Otherwise, the count of the number of item descriptor areas is set to the value of Value.

b) If FI indicates ARRAY_SIZE, then the value of the ARRAY_SIZE header field of descriptor D is set
to Value.

c) If FI indicates ARRAY_STATUS_POINTER, then the value of the ARRAY_STATUS_POINTER
header field of descriptor D is set to the address of Value. If Value is a null pointer, then the address
is set to 0 (zero).

d) If FI indicates ROWS_PROCESSED_POINTER, then the value of the ROWS_PROCESSED_POINTER
header field of descriptor D is set to the address of Value. If Value is a null pointer, then the address
is set to 0 (zero).

e) If FI indicates OCTET_LENGTH_POINTER, then the value of the OCTET_LENGTH_POINTER
field of IDA is set to the address of Value.

f) If FI indicates DATA_POINTER, then the value of the DATA_POINTER field of IDA is set to the
address of Value. If Value is a null pointer, then the address is set to 0 (zero).

g) If FI indicates INDICATOR_POINTER, then the value of the INDICATOR_POINTER field of IDA
is set to the address of Value.

h) If FI indicates RETURNED_CARDINALITY_POINTER, then the value fo the RETURNED_CAR-
DINALITY_POINTER field of IDA is set to the address of Value.

i) If FI indicates CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, or CHARAC-
TER_SET_NAME, then:

i) Let BL be the value of BufferLength.

ii) Case:

1) If BL is not negative, then let L be BL.

2) If BL indicates NULL TERMINATED, then let L be the number of octets of Value that
precedes the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

iii) Case:

SQL/CLI routines 273

CD 9075-3:200x(E)
6.56 SetDescField

If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

1)

2) Otherwise, let FV be the first l octets of Value and let TFV be the value of

TRIM (BOTH ' ' FROM 'FV')

iv) Let ML be the maximum length in characters allowed for an <identifier> as specified in the
Syntax Rules of Subclause 5.4, “Names and identifiers”, in ISO/IEC 9075-2, and let TFVL be
the length in characters of TFV.

v) Case:

1) If TFVL is greater than ML, then FV is set to the first ML characters of TFV and a completion
condition is raised: warning — string data, right truncation.

2) Otherwise, FV is set to TFV.

vi) Case:

1) If FI indicates CHARACTER_SET_CATALOG and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid catalog
name.

2) If FI indicates CHARACTER_SET_SCHEMA and FV does not conform to the Format and
Syntax Rules of an <identifier>, then an exception condition is raised: invalid schema name.

3) If FI indicates CHARACTER_SET_NAME and FV does not conform to the Format and
Syntax Rules of an <identifier>, then an exception condition is raised: invalid character set
name.

vii) The value of the field of IDA identified by FI is set to the value of FV.

j) Otherwise, the value of the field of IDA identified by FI is set to the value of Value.

14) If FI indicates LEVEL, then:

a) If RI is 1 (one) and value is not 0 (zero), then an exception condition is raised: dynamic SQL error —
invalid LEVEL value.

b) If RI is greater than 1 (one), then let PIDA be IDA's immediately preceding item descriptor area and
let K be its LEVEL value.

i) If Value is K+1 and TYPE in PIDA does not indicate ROW, ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR, then an exception condition is raised: dynamic SQL
error — invalid LEVEL value.

ii) If Value is greater than K+1, then an exception condition is raised: dynamic SQL error — invalid
LEVEL value.

iii) If value is less than K+1, then let OIDAi be the i-th item descriptor area to which PIDA is subor-
dinate and whose TYPE field indicates ROW. Let NSi be the number of immediately subordinate
descriptor areas of OIDAi between OIDAi and IDA, and let Di be the value of DEGREE of
OIDAi.

274 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.56 SetDescField

1) For each OIDAi whose LEVEL value is greater than V, if Di is not equal to NSi, then an
exception condition is raised: dynamic SQL error — invalid LEVEL value.

2) If K is not 0 (zero), then let OIDAi be the OIDAj whose LEVEL value is K. If there exists
no such OIDAj or Dj is not greater than NSj, then an exception condition is raised: dynamic
SQL error — invalid LEVEL value.

c) The value of LEVEL in IDA is set to Value.

15) If TYPE is 'ITEM' and RN is greater than N, then the COUNT field of D is set to RN.

16) If FI indicates TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISON, PARAMETER_MODE, PARAMETER_ORDI-
NAL_POSITION, PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA,
PARAMETER_SPECIFIC_NAME, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, or SCOPE_NAME, then the
DATA_POINTER field of IDA is set to zero.

17) If FI indicates DATA_POINTER, and Value is not a null pointer, and IDA is not consistent as specified in
Subclause 5.13, “Description of CLI item descriptor areas”, then an exception condition is raised: CLI-
specific condition — inconsistent descriptor information.

18) Let V be the value of Value.

19) If FI indicates TYPE, then:

a) All the other fields of IDA are set to implementation-dependent values.

b) Case:

i) If V indicates CHARACTER, CHARACTER VARYING or CHARACTER LARGE OBJECT
then the CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME fields of IDA are set to the values for the default character set name for the
SQL-session and the LENGTH field of IDA is set to the maximum possible length in characters
of the indicated data type.

ii) If V indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the LENGTH
field of IDA is set to the maximum possible length in octets of the indicated data type.

iii) If V indicates a <datetime type>, then the PRECISION field of IDA is set to 0 (zero).

iv) If V indicates INTERVAL, then the DATETIME_INTERVAL_PRECISION field of IDA is set
to 2.

v) If V indicates NUMERIC or DECIMAL, then the SCALE field of IDA is set to 0 (zero) and the
PRECISION field of IDA is set to the implementation-defined default value for the precision of
the NUMERIC or DECIMAL data types, respectively.

vi) If V indicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of IDA is set to 0
(zero) and the PRECISION field of IDA is set to the implementation-defined value for the pre-
cision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

vii) If V indicates FLOAT, then the PRECISION field of IDA is set to the implementation-defined
default value for the precision of the FLOAT data type.

SQL/CLI routines 275

CD 9075-3:200x(E)
6.56 SetDescField

viii) If V indicates REAL or DOUBLE PRECISION, then the PRECISION field of IDA is set to the
implementation-defined value for the precision of the REAL or DOUBLE PRECISION data
types, respectively.

ix) If V indicates an implementation-defined data type, then an implementation-defined set of fields
of IDA are set to implementation-defined default values.

x) Otherwise, an exception condition is raised: CLI-specific condition — invalid data type.

20) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime type>,
then:

a) All the fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to implementation-
dependent values.

b) Case:

i) If V indicates DATE, TIME, or TIME WITH TIME ZONE, then the PRECISION field of IDA
is set to 0 (zero).

ii) If V indicates TIMESTAMP or TIMESTAMP WITH TIME ZONE, then the PRECISION field
of IDA is set to 6.

21) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates INTERVAL, then
the DATETIME_INTERVAL_PRECISION field of IDA is set to 2 and

a) If V indicates DAY TO SECOND, HOUR TO SECOND, MINUTE TO SECOND, or SECOND, then
the PRECISION field of IDA is set to 6.

b) Otherwise, the PRECISION field of IDA is set to 0 (zero).

22) Restrictions on the differences allowed between implementation and application parameter descriptors are
implementation-defined, except as specified in the General Rules of Subclause 5.6, “Implicit EXECUTE
USING and OPEN USING clauses”, in the General Rules of Subclause 5.7, “Implicit CALL USING
clause”, and in the General Rules of Subclause 6.49, “ParamData”. Restrictions on the differences between
the implementation and application row descriptors are implementation-defined, except as specified in the
General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the General Rules of Subclause 6.30,
“GetData”.

276 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.56 SetDescField

6.57 SetDescRec

Function

Set commonly-used fields in a CLI descriptor area.

Definition

SetDescRec (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 Type IN SMALLINT,
 SubType IN SMALLINT,
 Length IN INTEGER,
 Precision IN SMALLINT,
 Scale IN SMALLINT,
 Data DEF ANY,
 StringLength DEF INTEGER,
 Indicator DEF INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of the
COUNT field of D.

2) The General Rules of Subclause 5.11, “Deferred parameter check”, are applied to D as the DESCRIPTOR
AREA.

3) If D is an implementation row descriptor, then an exception condition is raised: CLI-specific condition —
cannot modify an implementation row descriptor.

4) Let RN be the value of RecordNumber.

5) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

6) If RN is greater than N, then

Case:

a) If the memory requirements to manage the larger CLI descriptor area cannot be satisfied, then an
exception condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the COUNT field of D is set to RN.

7) Let IDA be the item descriptor area of D specified by RN.

8) Information is set in D as follows:

a) The data type, precision, scale, and datetime data type of the item described by IDA are set to the values
of Type, Precision, Scale, and SubType, respectively.

SQL/CLI routines 277

CD 9075-3:200x(E)
6.57 SetDescRec

b) Case:

i) If D is an implementation parameter descriptor, then the length (in characters or positions, as
appropriate) of the item described by IDA is set to the value of Length.

ii) Otherwise, the length in octets of the item described by IDA is set to the value of Length.

c) If StringLength is not a null pointer, then the address of the host variable that is to provide the length
of the item described by IDA, or that is to receive the returned length in octets of the item described
by IDA, is set to the address of StringLength.

d) The address of the host variable that is to provide a value for the item described by IDA, or that is to
receive a value for the item described by IDA, is set to the address of Data. If Data is a null pointer,
then the address is set to 0 (zero).

e) If Indicator is not a null pointer, then the address of the <indicator variable> associated with the item
described by IDA is set to the address of Indicator.

9) If Data is not a null pointer and IDA is not consistent as specified in Subclause 5.13, “Description of CLI
item descriptor areas”, then an exception condition is raised: CLI-specific condition — inconsistent
descriptor information.

10) If an exception condition is raised, then all fields of IDA for which specific values were provided in the
invocation of SetDescRec are set to implementation-dependent values and the value of the COUNT field
of D is unchanged.

11) Restrictions on the differences allowed between implementation and application parameter descriptors are
implementation-defined, except as specified in the General Rules of Subclause 5.6, “Implicit EXECUTE
USING and OPEN USING clauses”, in the General Rules of Subclause 5.7, “Implicit CALL USING
clause”, and in the General Rules of Subclause 6.49, “ParamData”. Restrictions on the differences between
the implementation and application row descriptors are implementation-defined, except as specified in the
General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the General Rules of Subclause 6.30,
“GetData”.

278 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.57 SetDescRec

6.58 SetEnvAttr

Function

Set the value of an SQL-environment attribute.

Definition

SetEnvAttr (
 EnvironmentHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies an allocated
skeleton SQL-environment, then an exception condition is raised: CLI-specific condition — invalid
handle.

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) If there are any allocated SQL-connections associated with E, then an exception condition is raised: CLI-
specific condition — attribute cannot be set now.

3) Let A be the value of Attribute.

4) If A is not one of the code values in Table 16, “Codes used for environment attributes”, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

5) If A indicates NULL TERMINATION, then

Case:

a) If Value indicates TRUE, then null termination for E is set to True.

b) If Value indicates FALSE, then null termination for E is set to False.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

6) If A specifies an implementation-defined environment attribute, then

Case:

a) If the data type for the environment attribute is specified as INTEGER in Table 20, “Data types of
attributes”, then the environment attribute is set to the value of Value.

SQL/CLI routines 279

CD 9075-3:200x(E)
6.58 SetEnvAttr

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that
precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

iii) The environment attribute is set to the first L octets of Value.

280 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.58 SetEnvAttr

6.59 SetStmtAttr

Function

Set the value of an SQL-statement attribute.

Definition

SetStmtAttr (
 StatementHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 18, “Codes used for statement attributes”, or if A is one of the
code values in Table 18, “Codes used for statement attributes”, but the row that contains A contains 'No'
in the 'May be set' column, then an exception condition is raised: CLI-specific condition — invalid attribute
identifier.

4) Let V be the value of Value.

5) Case:

a) If A indicates APD_HANDLE, then:

i) Case:

1) If V does not identify an allocated CLI descriptor area, then an exception condition is raised:
CLI-specific condition — invalid attribute value.

2) Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value of the
ALLOC_TYPE field for DA.

ii) Case:

1) If AT indicates AUTOMATIC but DA is not the application parameter descriptor associated
with S, then an exception condition is raised: CLI-specific condition — invalid use of auto-
matically-allocated descriptor handle.

2) Otherwise, DA becomes the current application parameter descriptor for S.

b) If A indicates ARD_HANDLE, then:

i) Case:

SQL/CLI routines 281

CD 9075-3:200x(E)
6.59 SetStmtAttr

If V does not identify an allocated CLI descriptor area, then an exception condition is raised:
CLI-specific condition — invalid attribute value.

1)

2) Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value of the
ALLOC_TYPE field for DA.

ii) Case:

1) If AT indicates AUTOMATIC but DA is not the application row descriptor associated with
S, then an exception condition is raised: CLI-specific condition — invalid use of automati-
cally-allocated descriptor handle.

2) Otherwise, DA becomes the current application row descriptor for S.

c) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the implementation supports scrollable cursors, then:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-specific
condition — attribute cannot be set now.

2) Case:

A) If V indicates NONSCROLLABLE, then the CURSOR SCROLLABLE attribute of S
is set to NONSCROLLABLE.

B) If V indicates SCROLLABLE, then the CURSOR SCROLLABLE attribute of S is set
to SCROLLABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

d) If A indicates CURSOR SENSITIVITY, then

Case:

i) If the implementation supports cursor sensitivity, then

Case:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-specific
condition — attribute cannot be set now.

2) Case:

A) If V indicates ASENSITIVE, then the CURSOR SENSITIVITY attribute of S is set to
ASENSITIVE.

B) If V indicates INSENSITIVE, then the CURSOR SENSITIVITY attribute of S is set to
INSENSITIVE.

C) If V indicates SENSITIVE, then the CURSOR SENSITIVITY attribute of S is set to
SENSITIVE.

282 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.59 SetStmtAttr

D) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

e) If A indicates METADATA ID, then

Case:

i) If V indicates FALSE, then the METADATA ID attribute of S is set to FALSE.

ii) If V indicates TRUE, then the METADATA ID attribute of S is set to TRUE.

iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

f) If A indicates CURSOR HOLDABLE, then

Case:

i) If the implementation supports cursor holdability, then

Case:

1) If an open cursor is associated with S, then an exception condition is raised: CLI-specific
condition — attribute cannot be set now.

2) Case:

A) If V indicates NONHOLDABLE, then the CURSOR HOLDABLE attribute of S is set
to NONHOLDABLE.

B) If V indicates HOLDABLE, then the CURSOR HOLDABLE attribute of S is set to
HOLDABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

ii) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

g) If A indicates CURRENT OF POSITION, then

Case:

i) If there is no open cursor associated with S, then an exception condition is raised: CLI-specific
condition — Invalid cursor state.

ii) If V is greater than the ARRAY_SIZE field of the application row descriptor associated with S,
then an exception condition is raised: CLI-specific condition — row value out of range.

iii) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, then an
exception condition is raised: CLI-specific condition — invalid cursor position.

iv) Otherwise, the current row within the fetched rowset associated with S is set to V.

h) If A indicates NEST DESCRIPTOR, then

Case:

SQL/CLI routines 283

CD 9075-3:200x(E)
6.59 SetStmtAttr

i) If there is a prepared statement associated with StatementHandle, then an exception condition
is raised: CLI-specific condition — function sequence error.

ii) Otherwise,

Case:

1) If V indicates FALSE, then the NEST DESCRIPTOR attribute of S is set to FALSE.

2) If V indicates TRUE, then the NEST DESCRIPTOR attribute of S is set to TRUE.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

6) If A specifies an implementation-defined statement attribute, then

Case:

a) If the data type for the statement attribute is specified as INTEGER in Table 20, “Data types of
attributes”, then the statement attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that
precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

iii) The statement attribute is set to the first L octets of Value.

284 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.59 SetStmtAttr

6.60 SpecialColumns

Function

Return a result set that contains a list of columns the combined values of which can uniquely identify any row
within a single specified table described by the Information Schemas of the connected data source.

Definition

SpecialColumns (
 StatementHandle IN INTEGER,
 IdentifierType IN SMALLINT,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 Scope IN SMALLINT,
 Nullable IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, and L3 has a maximum value equal to the implementation-defined maximum length of
a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let SPECIAL_COLUMNS_QUERY be a table, with the definition:

CREATE TABLE SPECIAL_COLUMNS_QUERY (
SCOPE SMALLINT,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 DATA_TYPE SMALLINT NOT NULL,
 TYPE_NAME CHARACTER VARYING(128) NOT NULL,
 COLUMN_SIZE INTEGER,
 BUFFER_LENGTH INTEGER,
 DECIMAL_DIGITS SMALLINT,
 PSEUDO_COLUMN SMALLINT)

6) SPECIAL_COLUMNS_QUERY contains a row for each column that is part of a set of columns that can be
used to best uniquely identify a row within the tables listed in SS's Information Schema TABLES view.
Some tables may not have such a set of columns. Some tables may have more than one such set, in which
case it is implementation-dependent as to which set of columns is chosen. It is implementation-dependent
as to whether a column identified for a given table is a pseudo-column.

SQL/CLI routines 285

CD 9075-3:200x(E)
6.60 SpecialColumns

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

b) Case:

i) If the value of SUP is 1 (one), then Table 29, “Codes and data types for implementation infor-
mation”, is 'Y', then SPECIAL_COLUMNS_QUERY contains a row for each identifying column
in SS's Information Schema COLUMNS view and each implementation-dependent pseudo-col-
umn.

ii) Otherwise, SPECIAL_COLUMNS_QUERY contains a row for each identifying column in SS's
Information Schema COLUMNS view and each implementation-dependent pseudo-column in
accordance with implementation-defined authorization criteria.

7) If the value of IdentifierType is other than the code for BEST ROWID in Table 39, “Column types and
scopes used with SpecialColumns”, or an implementation-defined extension to that table, then an exception
condition is raised: CLI-specific condition — column type out of range.

8) If the value of Scope is other than the code SCOPE CURRENT ROW, SCOPE TRANSACTION, or SCOPE
SESSION in Table 39, “Column types and scopes used with SpecialColumns”, or an implementation-
defined extension to that table, then an exception condition is raised: CLI-specific condition — scope out
of range.

9) If the value of Nullable is other than the code for NO NULLS or NULLABLE in Table 39, “Column types
and scopes used with SpecialColumns”, then an exception condition is raised: CLI-specific condition —
nullable type out of range.

10) For each row of SPECIAL_COLUMNS_QUERY:

a) The value of SCOPE in SPECIAL_COLUMNS_QUERY is either the code for one of SCOPE CURRENT
ROW, SCOPE TRANSACTION, or SCOPE SESSION from Table 39, “Column types and scopes used
with SpecialColumns”, or it is an implementation-defined value, determined as follows:

Case:

i) If the value that uniquely identifies a row is only guaranteed to be valid while positioned on that
row, then the code is that for SCOPE CURRENT ROW.

ii) If the value that uniquely identifies a row is only guaranteed to be valid for the current transaction,
then the code is that for SCOPE TRANSACTION.

iii) If the value that uniquely identifies a row is only guaranteed to be valid for the current SQL-
session, then the code is that for SCOPE SESSION.

iv) Otherwise, the value is implementation-defined.

b) The value of COLUMN_NAME in SPECIAL_COLUMNS_QUERY is the value of the COLUMN_NAME
column in the COLUMNS view.

c) The value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is derived from the values of the
DATA_TYPE and INTERVAL_TYPE columns in the COLUMNS view as follows:

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
DATA_TYPE in (SPECIAL_COLUMNS_QUERY) is the appropriate Code from Table 33,

286 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.60 SpecialColumns

“Codes used for concise data types”, that matches the interval specified in the INTERVAL_TYPE
column in the COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is the appropriate
Code from Table 33, “Codes used for concise data types”, that matches the interval specified in
the DATA_TYPE column in the COLUMNS view.

d) The value of TYPE_NAME in SPECIAL_COLUMNS_QUERY is an implementation-defined value
that is the character string by which the data type is known at the data source.

e) The value of COLUMN_SIZE in SPECIAL_COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER', 'CHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY', 'BINARY VARYING', or 'BINARY
LARGE OBJECT', then the value is that of the CHARACTER_MAXIMUM_LENGTH in the
same row of the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is 'DECIMAL' or 'NUMERIC', then the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS view.

iii) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT',
'FLOAT', 'REAL', or 'DOUBLE PRECISION', then the value is implementation-defined.

iv) If the value of DATA_TYPE in the COLUMNS view is 'DATE', 'TIME', 'TIMESTAMP', 'TIME
WITH TIME ZONE', or 'TIMESTAMP WITH TIME ZONE', then the value of COLUMN_SIZE
is that derived from SR 33), in Subclause 6.1, “<data type>”, of ISO/IEC 9075-2, where the
value of <time fractional seconds precision> is the value of the NUMERIC_PRECISION column
in the same row of the COLUMNS view.

v) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of COL-
UMN_SIZE is that derived from the General Rules of Subclause 10.1, “<interval qualifier>”,
of ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in the same
row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_PRECISION
column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the NUMERIC_PRECI-
SION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is 'REF', then the value is the length in
octets of the reference type.

vii) Otherwise, the value is implementation-dependent.

f) The value of BUFFER_LENGTH in SPECIAL_COLUMNS_QUERY is implementation-defined.

NOTE 52 — The purpose of BUFFER_LENGTH is to record the number of octets transferred for the column with a Fetch
routine, a FetchScroll routine, or a GetData routine when the TYPE field in the application row descriptor indicates DEFAULT.
This length excludes any null terminator.

g) The value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is:

Case:

SQL/CLI routines 287

CD 9075-3:200x(E)
6.60 SpecialColumns

i) If the value of DATA_TYPE in the COLUMNS view is one of 'DATE', 'TIME', 'TIMESTAMP',
'TIME WITH TIME ZONE', or 'TIMESTAMP WITH TIME ZONE', then the value of DECI-
MAL_DIGITS in SPECIAL_COLUMNS_QUERY is the value of the DATETIME_PRECISION
column in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of 'NUMERIC', 'DECIMAL',
'SMALLINT', 'INTEGER', or 'BIGINT', then the value of DECIMAL_DIGITS in SPE-
CIAL_COLUMNS_QUERY is the value of the NUMERIC_SCALE column in the COLUMNS
view.

iii) Otherwise, the value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is the null value.

h) The value of PSEUDO_COLUMN in SPECIAL_COLUMNS_QUERY is the code for one of PSEUDO
UNKNOWN, NOT PSEUDO, or PSEUDO from Table 39, “Column types and scopes used with Spe-
cialColumns”. The algorithm used to set this value is implementation-dependent.

11) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3, respectively.

12) Let CATVAL, SCHVAL, TBLVAL, SCPVAL, and NULVAL be the values of CatalogName, SchemaName,
and TableName, Scope, and Nullable respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, is 'Y', then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid
use of null pointer.

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid use
of null pointer.

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

288 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.60 SpecialColumns

Let SCHVAL be the first L octets of SchemaName.

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

SQL/CLI routines 289

CD 9075-3:200x(E)
6.60 SpecialColumns

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

ii) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM = 'SCHVAL' AND

iii) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME = 'TBLVAL' AND

20) Let the value of SCPSTR be the character string:

SCOPE >= SCPVAL

21) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || SCPSTR

290 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.60 SpecialColumns

22) Case:

a) If NULVAL is equal to the code for NO NULLS in Table 27, “Miscellaneous codes used in CLI”, and
any of the rows selected by the above query would describe a column for which the value of
IS_NULLABLE column in the COLUMNS view is 'YES', then let STMT be the character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE 1 = 2 – select no rows
ORDER BY SCOPE

b) Otherwise, let STMT be the character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE PRED
ORDER BY SCOPE

23) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

SQL/CLI routines 291

CD 9075-3:200x(E)
6.60 SpecialColumns

6.61 StartTran

Function

Explicitly start an SQL-transaction and set its characteristics.

Definition

StartTran (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 AccessMode IN INTEGER,
 IsolationLevel IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

3) Case:

a) If HT indicates STATEMENT HANDLE, then

Case:

i) If H does not identify an allocated SQL-statement, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.

b) If HT indicates DESCRIPTOR HANDLE, then

Case:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is raised:
CLI-specific condition — invalid handle.

ii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.

c) If HT indicates CONNECTION HANDLE, then

Case:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised: CLI-
specific condition — invalid handle.

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

292 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.61 StartTran

3) Case:

A) If there is no established SQL-connection associated with C, then an exception condition
is raised: connection exception — connection does not exist.

B) Otherwise, let EC be the established SQL-connection associated with C.

4) If C has an associated established SQL-connection that is active, then let L1 be a list contain-
ing EC; otherwise, let L1 be an empty list.

d) If HT indicates ENVIRONMENT HANDLE, then

Case:

i) If H does not identify an allocated SQL-environment or if it identifies an allocated SQL-envi-
ronment that is a skeleton SQL-environment, then an exception condition is raised: CLI-specific
condition — invalid handle.

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list of the
allocated SQL-connections in L that have an associated established SQL-connection that is
active.

4) If an SQL-transaction is currently active on any of the SQL-connections contained in L1, then an exception
condition is raised: invalid transaction state — active SQL-transaction.

5) Let AM be the value for AccessMode. If AM is not one of the codes in Table 32, “Values for TRANSACTION
ACCESS MODE with StartTran”, then an exception condition is raised: CLI-specific condition — invalid
attribute identifier.

6) Let IL be the value for IsolationLevel. If IL is not one of the codes in Table 31, “Values for TRANSACTION
ISOLATION OPTION with StartTran”, then an exception condition is raised: CLI-specific condition —
invalid attribute identifier.

7) Let TXN be the SQL-transaction that is started by this invocation of the StartTran routine.

8) If READ ONLY is specified by AM, then the access mode of TXN is set to read-only. If READ WRITE is
specified by AM, then the access mode of TXN is set to read-write.

9) The isolation level of TXN is set to an implementation-defined isolation level that will not exhibit any of
the phenomena that the isolation level indicated by TIL would not exhibit, as specified in Table 8, “SQL-
transaction isolation levels and the three phenomena”, in ISO/IEC 9075-2.

10) TXN is started in each SQL-connection contained in L1.

SQL/CLI routines 293

CD 9075-3:200x(E)
6.61 StartTran

6.62 TablePrivileges

Function

Return a result set that contains a list of the privileges held on the tables whose names adhere to the requested
pattern(s) within tables described by the Information Schemas of the connected data source.

Definition

TablePrivileges (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, and L3 has a maximum value equal to the implementation-defined maximum length of
a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let TABLE_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE TABLE_PRIVILEGES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
 GRANTOR CHARACTER VARYING(128) NOT NULL,
 GRANTEE CHARACTER VARYING(128) NOT NULL,
 PRIVILEGE CHARACTER VARYING(128) NOT NULL,
 IS_GRANTABLE CHARACTER VARYING(3) NOT NULL,
 WITH_HIERARCHY CHARACTER VARYING(254) NOT NULL)

6) TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS's Information Schema
TABLE_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

b) Case:

294 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.62 TablePrivileges

i) If the value of SUP is 1 (one), then TABLE_PRIVILEGES_QUERY contains a row for each
privilege in SS's Information Schema TABLE_PRIVILEGES view.

ii) Otherwise, TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS's Information
Schema TABLE_PRIVILEGES view that meets implementation-defined authorization criteria.

7) For each row of TABLE_PRIVILEGES_QUERY:

a) If the implementation does not support catalog names, then TABLE_CAT is the null value; otherwise,
the value of TABLE_CAT in TABLE_PRIVILEGES_QUERY is the value of the TABLE_CATALOG
column in the TABLE_PRIVILEGES view in the Information Schema.

b) The value of TABLE_SCHEM in TABLE_PRIVILEGES_QUERY is the value of the TABLE_SCHEMA
column in the TABLE_PRIVILEGES view.

c) The value of TABLE_NAME in TABLE_PRIVILEGES_QUERY is the value of the TABLE_NAME
column in the TABLE_PRIVILEGES view.

d) The value of GRANTOR in TABLE_PRIVILEGES_QUERY is the value of the GRANTOR column in
the TABLE_PRIVILEGES view.

e) The value of GRANTEE in TABLE_PRIVILEGES_QUERY is the value of the GRANTEE column in
the TABLE_PRIVILEGES view.

f) The value of PRIVILEGE in TABLE_PRIVILEGES_QUERY is the value of the PRIVILEGE_TYPE
column in the TABLE_PRIVILEGES view.

g) The value of IS_GRANTABLE in TABLE_PRIVILEGES_QUERY is the value of the IS_GRANTABLE
column in the TABLE_PRIVILEGES view.

h) The value of WITH_HIERARCHY in TABLE_PRIVILEGES_QUERY is the value of the
WITH_HIERARCHY column in the TABLE_PRIVILEGES veiw.

8) Let NL1, NL2, and NL3 be the values of NameLength1, NameLength2, and NameLength3, respectively.

9) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and TableName,
respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, is 'Y', then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

SQL/CLI routines 295

CD 9075-3:200x(E)
6.62 TablePrivileges

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

296 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.62 TablePrivileges

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation informa-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that same
table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with the value
of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

SQL/CLI routines 297

CD 9075-3:200x(E)
6.62 TablePrivileges

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM LIKE 'SCHVAL' ESCAPE 'ESC' AND

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME LIKE 'TBLVAL' ESCAPE 'ESC' AND

16) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

17) Let STMT be the character string:

SELECT *
FROM TABLE_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, PRIVILEGE

18) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

298 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.62 TablePrivileges

6.63 Tables

Function

Based on the specified selection criteria, return a result set that contains information about tables described by
the Information Schema of the connected data source.

Definition

Tables (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 TableType IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined maximum length
of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open cursor is associated with S, then an exception condition is raised: invalid cursor state.

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that connection.

5) Let TABLES_QUERY be a table with the definition:

CREATE TABLE TABLES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128),

TABLE_NAME CHARACTER VARYING(128),
 TABLE_TYPE CHARACTER VARYING(254),
 REMARKS CHARACTER VARYING(254),
 SELF_REF_COLUMN CHARACTER VARYING(128),
 REF_GENERATION CHARACTER VARYING(254),
 UDT_CAT CHARACTER VARYING(128),
 UDT_SCHEM CHARACTER VARYING(128),
 UDT_NAME CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME))

6) TABLES_QUERY contains a row for each table described by SS's Information Schema TABLES view
where:

SQL/CLI routines 299

CD 9075-3:200x(E)
6.63 Tables

Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType
= 'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

a)

b) Case:

i) If the value of SUP is 1 (one), then TABLES_QUERY contains a row for each row describing a
table in SS's Information Schema TABLES view for which the connected UserName has selection
privileges.

ii) Otherwise, TABLES_QUERY contains a row for each row describing a table in SS's Information
Schema TABLES view that meets implementation-defined authorization criteria.

7) The description of the table TABLES_QUERY is:

a) The value of TABLE_CAT in TABLES_QUERY is the value of the TABLE_CATALOG column in
the TABLES view. If SS does not support catalog names, then TABLE_CAT is set to the null value.

b) The value of TABLE_SCHEM in TABLES_QUERY is the value of the TABLE_SCHEMA column in
the TABLES view. The value of TABLE_NAME in TABLES_QUERY is the value of the
TABLE_NAME column in the TABLES view.

c) The value of TABLE_TYPE in TABLES_QUERY is determined by the values of the TABLE_TYPE
column in the TABLES view.

Case:

i) If the value of TABLE_TYPE in the TABLES view is 'VIEW', then

Case:

1) If the defined view is within the Information Schema itself, then the value of TABLE_TYPE
in TABLES_QUERY is set to 'SYSTEM TABLE".

2) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is set to 'VIEW'.

ii) If the value of TABLE_TYPE in the TABLES view is 'BASE TABLE', then the value of
TABLE_TYPE in TABLES_QUERY is set to 'TABLE'.

iii) If the value of TABLE_TYPE in the TABLES view is 'GLOBAL TEMPORARY' or 'LOCAL
TEMPORARY', then the value of TABLE_TYPE in TABLES_QUERY is set to that value.

iv) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is an implementation-defined value.

d) The value of REMARKS in TABLES_QUERY is an implementation-defined description of the table.

e) The value of SELF_REF_COLUMN in TABLES_QUERY is the value of the SELF_REFERENC-
ING_COLUMN_NAME column in the TABLES view.

f) The value of REF_GENERATION in TABLES_QUERY is the value of the REFERENCE_GENERA-
TION column in the TABLES view.

g) The value of UDT_CAT in TABLES_QUERY is the value of the USER_DEFINED_TYPE_CATALOG
column in the TABLES view.

h) The value of UDT_SCHEMA in TABLES_QUERY is the value of the
USER_DEFINED_TYPE_SCHEMA column in the TABLES view.

300 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.63 Tables

i) The value of UDT_NAME in TABLES_QUERY is the value of the USER_DEFINED_TYPE_NAME
column in the TABLES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and Name-
Length4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and TYPVAL be the values of CatalogName, SchemaName, TableName,
and TableType, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from Table 29,
“Codes and data types for implementation information”, is 'Y', then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception condition is raised:
CLI-specific condition — invalid use of null pointer.

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero. If TableType is a null pointer, then NL4 is
set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TBLVAL be the first L octets of TableName.

15) Case:

SQL/CLI routines 301

CD 9075-3:200x(E)
6.63 Tables

If NL4 is not negative, then let L be NL4.a)

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of TableType that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let TYPVAL be the first L octets of ColumnName.

16) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH (TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH (TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

302 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.63 Tables

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR
1) = '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation informa-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that same
table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with the value
of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:

TABLE_SCHEM LIKE 'SCHVAL' ESCAPE 'ESC' AND

v) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME LIKE 'TBLVAL' ESCAPE 'ESC' AND

17) Case:

a) If the value of NL4 is zero, then let TYPSTR be a zero-length string.

b) Otherwise,

SQL/CLI routines 303

CD 9075-3:200x(E)
6.63 Tables

i) TableType is a comma-separated list of one or more types of tables that are to be returned in
the result set. Each value may optionally be enclosed within <quote> characters. The types are
'TABLE', 'VIEW', 'GLOBAL TEMPORARY', 'LOCAL TEMPORARY', and 'SYSTEM TABLE'.

NOTE 53 — These types are mutually exclusive; for instance, 'TABLE' includes only user-created base tables and
'SYSTEM TABLE' includes only views from the Information Schema. Implementation-defined types may also be
specified.

ii) Let N be the number of comma-separated values specified within TableType.

iii) Let TT be the set of comma-separated values TTi, 1 (one) ≤ i ≤ N, specified within TableType.

iv) TYPSTR is a string that is the predicate required to select the requested types of tables from
TABLES_QUERY:

TABLE_TYPE = '''' || TRIM(TT1) || '''' OR

TABLE_TYPE = '''' || TRIM(TT2) || '''' OR

...
TABLE_TYPE = '''' || TRIM(TTN) || ''''

18) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || TYPSTR || ' ' || 1=1

19) Case:

a) If the value of CATVAL is the value in the 'Value' column for ALL CATALOGS in Table 38, “Special
parameter values”, and both SCHVAL and TBLVAL are zero-length strings, then let STMT be the
character string:

SELECT DISTINCT TABLE_CAT,
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(254)),
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_CAT

NOTE 54 — All tables qualify for selection and no privileges are required for access to the underlying TABLES view.

b) If the value of SCHVAL is the value in the 'Value' column for ALL SCHEMAS in Table 38, “Special
parameter values”, and both CATVAL and TBLVAL are zero-length strings, then let STMT be the char-
acter string:

SELECT DISTINCT CAST (NULL AS VARCHAR(128)),
 TABLE_SCHEM,

CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(254)),
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_SCHEM

NOTE 55 — All tables qualify for selection and no privileges are required for access to the underlying TABLES view.

c) If the value of TYPVAL is the value in the 'Value' column for ALL TYPES in Table 38, “Special
parameter values”, and CATVAL, SCHVAL, and TBLVAL are zero-length strings, then let STMT be the
character string:

304 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.63 Tables

SELECT DISTINCT CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),

 TABLE_TYPE,
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY
ORDER BY TABLE_TYPE

NOTE 56 — All tables qualify for selection and no privileges are required for access to the underlying TABLES view.

d) Otherwise, let STMT be the character string:

SELECT *
FROM TABLES_QUERY
WHERE PRED
ORDER BY TABLE_TYPE, TABLE_CAT, TABLE_SCHEM, TABLE_NAME

20) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

SQL/CLI routines 305

CD 9075-3:200x(E)
6.63 Tables

(Blank page)

306 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

7 Definition Schema

This Clause modifies Clause 6, “Definition Schema”, in ISO/IEC 9075-11.

7.1 SQL_IMPLEMENTATION_INFO base table

This Subclause modifies Subclause 6.44, “SQL_IMPLEMENTATION_INFO base table”, in ISO/IEC 9075-11.

Function

The SQL_IMPLEMENTATION_INFO base table has one row for each implementation information item
defined by ISO/IEC 9075.

Definition

No additional Definition.

Description

1) Insert this description Some IMPLEMENTATION_INFO_ID values assigned by ISO/IEC 9075 have
been assigned for backwards compatibility with ISO/IEC 9075-3:1995. All other values assigned by ISO/IEC
9075 are in the range 21000 through 24999, inclusive.

2) Insert this description Implementation-defined items that are represented in this table shall have an
IMPLEMENTATION_INFO_ID value that is in the range 11000 through 14999, inclusive.

Table Population

The implementation shall effectively populate the SQL_IMPLEMENTATION_INFO base table with an <insert
statement> that is equivalent to the <insert statement> shown below; the <insert statement> shown below provides
values only for certain columns and implicitly assigns the null value to other columns of the table.

The implementation effectively populates the table so that, for each row containing information about some
facility that the implementation supports, either the INTEGER_VALUE column or the CHARACTER_VALUE
column is set to a value that specifies the requisite information about that supported facility. For all information
items that the implementation does not support, both the INTEGER_VALUE and the CHARACTER_VALUE
column have the null value. The COMMENTS column may be set to any value deemed appropriate by the

Definition Schema 307

CD 9075-3:200x(E)
7.1 SQL_IMPLEMENTATION_INFO base table

implementation, or it may be set to the null value. The following INSERT statement specifies values for the
COMMENTS column that may be used by an implementation if it so chooses.

— Let CAT be 'Y' if the SQL-implementation supports catalog names and 'N' otherwise.

— Let COLL be the default collation name for the SQL-implementation.

— Let CCB be an integer representing the default cursor commit behavior of the SQL-implementation: 0
(zero) if the SQL-implementation closes cursors and deleted prepared statements, 1 (one) if it closes cursors
and retains prepared statements, and 2 if it leaves cursors open and retains prepared statements.

— Let DSN be the connection name used in a CONNECT statement when connecting to the SQL-implemen-
tation.

— Let DBMS be the name of the SQL-implementation software (e.g., the product name).

— Let VER be a character representation of the version of the implementation software comprising two digits,
a period, two more digits, another period, four more digits, and optionally a sequence of characters.

— Let DTI be a number indicating the default transaction isolation level of the SQL-implementation: 1 (one)
for READ UNCOMMITED, 2 for READ COMMITTED, 3 for REPEATABLE READ, and 4 for SERI-
ALIZABLE.

— Let IDC be a number indicating the treatment of identifiers when stored in the SQL-implementation's
metadata: 1 (one) indicates they are stored in all upper case characters, 2 that they are stored in all lower
case characters, 3 that they are stored in mixed case and that they are case sensitive, and 4 that they are
stored in mixed case but are case insensitive.

— Let NCOL be a number indicating how nulls are collated: 0 (zero) indicates that nulls are collated higher
than non-null values, and 1 (one) indicates that they are collated lower than non-null values.

— Let SERV be the SQL server name used by a CONNECT statement when connecting to the SQL-implemen-
tation.

— Let SPEC be a character string containing all special characters that are allowed in nondelimited identifiers.

— Let TXC be a number indicating the transaction capabilities of the SQL-implementation: 0 (zero) indicates
that transactions are not supported, 1 (one) that they are supported only for DML statements, 2 that they
are supported for both DML and DDL statements, 3 that they are supported only for DML statements and
that an implicit COMMIT occurs before any DDL statements are executed, and 4 that they are supported
only for DML statements and that DDL statements are ignored for the purposes of transactions.

INSERT INTO sql_implementation_info (implementation_info_id,
 implementation_info_name,
 integer_value,
 character_value,
 comments)
VALUES (10003, 'CATALOG NAME',

NULL, 'CAT',
 'CHAR: ''Y'' if supported, otherwise ''N'''),
 (10004, 'COLLATING SEQUENCE',

NULL, 'COLL',
 'CHAR: default collation name'),
 (23, 'CURSOR COMMIT BEHAVIOR',

CCB, NULL,
 'INT: 0: close cursors & delete prepared stmts
 1: close cursors & retain prepared stmts

308 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
7.1 SQL_IMPLEMENTATION_INFO base table

 2: leave cursors open & retain stmts'),
 (2, 'DATA SOURCE NAME',

NULL, 'DSN',
 'CHAR: <connection name> on CONNECT statement'),
 (17, 'DBMS NAME',

NULL, 'DBMS',
 'CHAR: Name of the implementation software'),
 (18, 'DBMS VERSION',

NULL, 'VER',
 'CHAR: Version of the implementation software
 The format is:

<part1>.<part2>.<part3>[<part4>]
 where:

<part1> ::= <digit><digit>

<part2> ::= <digit><digit>

<part3> ::= <digit><digit><digit><digit>
<part4> ::= <character representation>'),

 (26, 'DEFAULT TRANSACTION ISOLATION',
DTI, NULL,

 'INT: 1: READ UNCOMMITTED
 2: READ COMMITTED
 3: REPEATABLE READ
 4: SERIALIZABLE'),
 (28, 'IDENTIFIER CASE',

IDC, NULL,
 'The case in which identifiers are stored in the Definition Schema

INT: 1: stored in upper case
 2: stored in lower case
 3: stored in mixed case - case sensitive
 4: stored in mixed case - case insensitive'),
 (85, 'NULL COLLATION',

NCOL, NULL,
 'INT: 0: nulls higher than non-nulls
 1: nulls lower than non-nulls'),
 (13, 'SERVER NAME',

NULL, 'SERV',
 'CHAR: <SQL server name> on CONNECT statement'),
 (94, 'SPECIAL CHARACTERS',

NULL, 'SPEC',
 'CHAR: All special chars OK in non-delimited ids'),
 (46, 'TRANSACTION CAPABLE',

TXC, NULL,
 'INT: 0: not supported
 1: DML only - error if DDL
 2: both DML and DDL
 3: DML only - commit before DDL
 4: DML only - ignore DDL');

Definition Schema 309

CD 9075-3:200x(E)
7.1 SQL_IMPLEMENTATION_INFO base table

7.2 SQL_SIZING base table

This Subclause is modified by Subclause 25.11, “SQL_SIZING base table”, in ISO/IEC 9075-9.

This Subclause modifies Subclause 6.45, “SQL_SIZING base table”, in ISO/IEC 9075-11.

Function

The SQL_SIZING base table has one row for each sizing item defined by ISO/IEC 9075.

Definition

No additional Definition.

Description

1) Insert this description Some SIZING_ID values assigned by ISO/IEC 9075 have been assigned for
backwards compatibility with ISO/IEC 9075-3:1995. All other values assigned by ISO/IEC 9075 are in
the range 25000 through 29999, inclusive.

2) Insert this description Implementation-defined items that are represented in this table shall have a SIZ-
ING_ID value that is in the range 15000 through 19999, inclusive.

Table Population

The implementation shall effectively populate the SQL_SIZING base table with an <insert statement> that is
equivalent to the <insert statement> shown below; the <insert statement> shown below provides values only
for certain columns and implicitly assigns the null value to other columns of the table.

The implementation effectively populates the table so that, for each row containing information about some
facility that the implementation supports, the SUPPORTED_VALUE column is set to a value that specifies
the requisite information about that supported facility. For all information items that the implementation does
not support, the SUPPORTED_VALUE column has the null value. The COMMENTS column may be set to
any value deemed appropriate by the implementation, or it may be set to the null value.

INSERT INTO sql_sizing (sizing_id, sizing_name, comments)
VALUES (34, 'MAXIMUM CATALOG NAME LENGTH',

 'Length in characters'),
 (30, 'MAXIMUM COLUMN NAME LENGTH',
 'Length in characters'),
 (97, 'MAXIMUM COLUMNS IN GROUP BY', NULL),
 (99, 'MAXIMUM COLUMNS IN ORDER BY', NULL),
 (100, 'MAXIMUM COLUMNS IN SELECT,
 'Max number of expressions in <select list>'),
 (101, 'MAXIMUM COLUMNS IN TABLE', NULL),
 (1, 'MAXIMUM CONCURRENT ACTIVITIES',

310 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
7.2 SQL_SIZING base table

 'Max number of SQL-statements currently active'),
 (31, 'MAXIMUM CURSOR NAME LENGTH',
 'Length in characters'),
 (0, 'MAXIMUM DRIVER CONNECTIONS',
 'Max number of SQL-connections currently established'),
 (10005, 'MAXIMUM IDENTIFIER LENGTH',
 'Length in characters;
 If different for some objects, set to smallest max'),
 (32, 'MAXIMUM SCHEMA NAME LENGTH,
 'Length in characters'),
 (20000, 'MAXIMUM STATEMENT OCTETS',
 'Max length in octets of <SQL statement variable>'),
 (20001, 'MAXIMUM STATEMENT OCTETS DATA',
 'Max length in octets of <SQL data statement>'),
 (20002, 'MAXIMUM STATEMENT OCTETS SCHEMA',
 'Max length in octets of SQL <schema definition>'),
 (35, 'MAXIMUM TABLE NAME LENGTH',
 'Max length in chars of low order table name part'),
 (106, 'MAXIMUM TABLES IN SELECT',
 'Max number of table names in FROM clause'),
 (107, 'MAXIMUM USER NAME LENGTH',
 'Length in characters for a <user identifier> of an SQL-session'),
 (25000, 'MAXIMUM CURRENT DEFAULT TRANSFORM GROUP LENGTH',
 'Length in characters'),
 (25001, 'MAXIMUM CURRENT TRANSFORM GROUP LENGTH',
 'Length in characters'),
 (25002, 'MAXIMUM CURRENT PATH LENGTH',
 'Length in characters'),
 (25003, 'MAXIMUM CURRENT ROLE LENGTH',
 'Length in characters'),
 (25004, 'MAXIMUM SESSION USER LENGTH',
 'Length in characters'),
 (25005, 'MAXIMUM SYSTEM USER LENGTH',
 'Length in characters');

Definition Schema 311

CD 9075-3:200x(E)
7.2 SQL_SIZING base table

(Blank page)

312 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

8 Conformance

8.1 Claims of conformance to SQL/CLI

In addition to the requirements of ISO/IEC 9075-1, Clause 8, “Conformance”, a claim of conformance to this
part of ISO/IEC 9075 shall:

1) Claim conformance to at least one of:

— Feature C001, “CLI routine invocation in Ada”

— Feature C002, “CLI routine invocation in C”

— Feature C003, “CLI routine invocation in COBOL”

— Feature C004, “CLI routine invocation in Fortran”

— Feature C005, “CLI routine invocation in MUMPS”

— Feature C006, “CLI routine invocation in Pascal”

— Feature C007, “CLI routine invocation in PL/I”

8.2 Additional conformance requirements for SQL/CLI

A claim of conformance to this part of ISO/IEC 9075 implies that a conforming SQL/CLI implementation shall
correctly process all SQL language that is conforming SQL language in terms of the claim of conformance to
ISO/IEC 9075.

NOTE 57 — This includes all optional features to which conformance is claimed.

NOTE 58 — Certain facilities specified in this part of ISO/IEC 9075 are closely related to specific facilities specified in ISO/IEC 9075-
2; such facilities specified in this part of ISO/IEC 9075 are not supported unless the corresponding facilities in ISO/IEC 9075-2 are
supported. The relationships between the facilities specified in this part of ISO/IEC 9075 and the corresponding facilities in ISO/IEC
9075-2 are not specified, but are inferable.

For example, provision of the GetPosition, GetSubstring, and GetLength routines specified in this part of ISO/IEC 9075 is dependent
on support of the LARGE OBJECT data types specified in ISO/IEC 9075-2.

Conformance 313

CD 9075-3:200x(E)
8.1 Claims of conformance to SQL/CLI

8.3 Implied feature relationships of SQL/CLI

Table 47 — Implied feature relationships of SQL/CLI

Implied Feature NameImplied
Feature
ID

Feature NameFeature
ID

(none)

314 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
8.3 Implied feature relationships of SQL/CLI

Annex A
(informative)

Typical header files

This Annex is modified by Annex E, “Typical header files”, in ISO/IEC 9075-9.

A.1 C header file SQLCLI.H

This Subclause is modified by Subclause E.1, “C Header File SQLCLI.H”, in ISO/IEC 9075-9.

Here is a typical SQLCLI.H file. C applications include this file by containing the following statement:

 #include "sqlcli.h"

The following file contains C language function prototypes for the SQL/CLI routines.

 /* sqlcli.h Header File for SQL CLI.
 * The actual header file shall contain at least the information
 * specified here, except that the comments may vary.
 */
 /* API declaration data types */
 typedef unsigned char SQLCHAR;
 typedef void * SQLPOINTER;
 typedef unsigned char SQLCLOB;
 typedef long SQLCLOB_LOCATOR;
 typedef unsigned char SQLBLOB;
 typedef long SQLBLOB_LOCATOR;
 typedef unsigned char SQLNUMERIC;
 typedef unsigned char SQLDECIMAL;
 typedef short SQLSMALLINT;
 typedef long SQLINTEGER;
 typedef long long SQLBIGINT;
 typedef float SQLREAL;
 typedef double SQLDOUBLE;
 typedef unsigned char SQLDATE;
 typedef unsigned char SQLTIME;
 typedef unsigned char SQLTIMESTAMP;
 typedef unsigned char SQLINTERVAL;
 typedef long SQLUDT_LOCATOR;
 typedef unsigned char SQLREF;
 typedef long SQLARRAY_LOCATOR;
 typedef long SQLMULTISET_LOCATOR;
 typedef unsigned char SQLBINARY;
 typedef unsigned char SQLVARBINARY;
 /* Function return type */
 typedef SQLSMALLINT SQLRETURN;

Typical header files 315

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 /* Generic data structures */
 typedef SQLINTEGER SQLHENV; /* environment handle */
 typedef SQLINTEGER SQLHDBC; /* connection handle */
 typedef SQLINTEGER SQLHSTMT; /* statement handle */
 typedef SQLINTEGER SQLHDESC; /* descriptor handle */
 /* Special length/indicator values */
 #define SQL_NULL_DATA -1
 #define SQL_DATA_AT_EXEC -2
 /* Return values from functions */
 #define SQL_SUCCESS 0
 #define SQL_SUCCESS_WITH_INFO 1
 #define SQL_NEED_DATA 99
 #define SQL_NO_DATA 100
 #define SQL_ERROR -1
 #define SQL_INVALID_HANDLE -2
 /* Row status values after a call to a fetch function */
 #define SQL_ROW_SUCCESS 0
 #define SQL_ROW_SUCCESS_WITH_INFO 6
 #define SQL_ROW_ERROR 5
 #define SQL_ROW_NO_ROW 3
 /* Test for SQL_SUCCESS or SQL_SUCCESS_WITH_INFO */
 #define SQL_SUCCEEDED(rc) (((rc)&(~1))==0)
 /* flags for null-terminated string */
 #define SQL_NTS -3
 #define SQL_NTSL -3L
 /* Maximum message length */
 #define SQL_MAXIMUM_MESSAGE_LENGTH 512
 /* Handle type identifiers */
 #define SQL_HANDLE_ENV 1
 #define SQL_HANDLE_DBC 2
 #define SQL_HANDLE_STMT 3
 #define SQL_HANDLE_DESC 4
 /* Environment attribute */
 #define SQL_ATTR_OUTPUT_NTS 10001
 /* Connection attribute */
 #define SQL_ATTR_AUTO_IPD 10001
 #define SQL_ATTR_SAVEPOINT_NAME 10027
 /* Statement attributes */
 #define SQL_ATTR_CURSOR_SCROLLABLE -1
 #define SQL_ATTR_CURSOR_SENSITIVITY -2
 #define SQL_ATTR_CURSOR_HOLDABLE -3
 #define SQL_ATTR_APP_ROW_DESC 10010
 #define SQL_ATTR_APP_PARAM_DESC 10011
 #define SQL_ATTR_IMP_ROW_DESC 10012
 #define SQL_ATTR_IMP_PARAM_DESC 10013
 #define SQL_ATTR_METADATA_ID 10014
 #define SQL_ATTR_CURRENT_OF_POSITION 10027
 #define SQL_ATTR_NEST_DESCRIPTOR 10029
 /* Identifiers of fields in the SQL/CLI item descriptor area */
 #define SQL_DESC_ARRAY_SIZE 20
 #define SQL_DESC_ARRAY_STATUS_POINTER 21
 #define SQL_DESC_DATETIME_INTERVAL_PRECISION 26
 #define SQL_DESC_ROWS_PROCESSED_POINTER 34
 #define SQL_DESC_COUNT 1001
 #define SQL_DESC_TYPE 1002
 #define SQL_DESC_LENGTH 1003
 #define SQL_DESC_OCTET_LENGTH_POINTER 1004

316 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_DESC_PRECISION 1005
 #define SQL_DESC_SCALE 1006
 #define SQL_DESC_DATETIME_INTERVAL_CODE 1007
 #define SQL_DESC_NULLABLE 1008
 #define SQL_DESC_INDICATOR_POINTER 1009
 #define SQL_DESC_DATA_POINTER 1010
 #define SQL_DESC_NAME 1011
 #define SQL_DESC_UNNAMED 1012
 #define SQL_DESC_OCTET_LENGTH 1013
 #define SQL_DESC_COLLATION_CATALOG 1015
 #define SQL_DESC_COLLATION_SCHEMA 1016
 #define SQL_DESC_COLLATION_NAME 1017
 #define SQL_DESC_CHARACTER_SET_CATALOG 1018
 #define SQL_DESC_CHARACTER_SET_SCHEMA 1019
 #define SQL_DESC_CHARACTER_SET_NAME 1020
 #define SQL_DESC_PARAMETER_MODE 1021
 #define SQL_DESC_PARAMETER_ORDINAL_POSITION 1022
 #define SQL_DESC_PARAMETER_SPECIFIC_CATALOG 1023
 #define SQL_DESC_PARAMETER_SPECIFIC_SCHEMA 1024
 #define SQL_DESC_PARAMETER_SPECIFIC_NAME 1025
 #define SQL_DESC_UDT_CATALOG 1026
 #define SQL_DESC_UDT_SCHEMA 1027
 #define SQL_DESC_UDT_NAME 1028
 #define SQL_DESC_KEY_TYPE 1029
 #define SQL_DESC_KEY_MEMBER 1030
 #define SQL_DESC_DYNAMIC_FUNCTION 1031
 #define SQL_DESC_DYNAMIC_FUNCTION_CODE 1032
 #define SQL_DESC_SCOPE_CATALOG 1033
 #define SQL_DESC_SCOPE_SCHEMA 1034
 #define SQL_DESC_SCOPE_NAME 1035
 #define SQL_DESC_SPECIFIC_TYPE_CATALOG 1036
 #define SQL_DESC_SPECIFIC_TYPE_SCHEMA 1037
 #define SQL_DESC_SPECIFIC_TYPE_NAME 1038
 #define SQL_DESC_CURRENT_TRANSFORM_GROUP 1039
 #define SQL_DESC_CARDINALITY 1040
 #define SQL_DESC_DEGREE 1041
 #define SQL_DESC_LEVEL 1042
 #define SQL_DESC_RETURNED_CARDINALITY_POINTER 1043
 #define SQL_DESC_TOP_LEVEL_COUNT 1044
 #define SQL_DESC_USER_DEFINED_TYPE_CODE 1045
 #define SQL_DESC_ALLOC_TYPE 1099
 /* Identifiers of fields in the diagnostics area */
 #define SQL_DIAG_ROW_NUMBER -1248
 #define SQL_DIAG_COLUMN_NUMBER -1247
 #define SQL_DIAG_RETURNCODE 1
 #define SQL_DIAG_NUMBER 2
 #define SQL_DIAG_ROW_COUNT 3
 #define SQL_DIAG_SQLSTATE 4
 #define SQL_DIAG_NATIVE_CODE 5
 #define SQL_DIAG_MESSAGE_TEXT 6
 #define SQL_DIAG_DYNAMIC_FUNCTION 7
 #define SQL_DIAG_CLASS_ORIGIN 8
 #define SQL_DIAG_SUBCLASS_ORIGIN 9
 #define SQL_DIAG_CONNECTION_NAME 10
 #define SQL_DIAG_SERVER_NAME 11
 #define SQL_DIAG_DYNAMIC_FUNCTION_CODE 12
 #define SQL_DIAG_MORE 13

Typical header files 317

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_DIAG_CONDITION_NUMBER 14
 #define SQL_DIAG_CONSTRAINT_CATALOG 15
 #define SQL_DIAG_CONSTRAINT_SCHEMA 16
 #define SQL_DIAG_CONSTRAINT_NAME 17
 #define SQL_DIAG_CATALOG_NAME 18
 #define SQL_DIAG_SCHEMA_NAME 19
 #define SQL_DIAG_TABLE_NAME 20
 #define SQL_DIAG_COLUMN_NAME 21
 #define SQL_DIAG_CURSOR_NAME 22
 #define SQL_DIAG_MESSAGE_LENGTH 23
 #define SQL_DIAG_MESSAGE_OCTET_LENGTH 24
 #define SQL_DIAG_CONDITION_IDENTIFIER 25
 #define SQL_DIAG_PARAMETER_NAME 26
 #define SQL_DIAG_ROUTINE_CATALOG 27
 #define SQL_DIAG_ROUTINE_SCHEMA 28
 #define SQL_DIAG_ROUTINE_NAME 29
 #define SQL_DIAG_SPECIFIC_NAME 30
 #define SQL_DIAG_TRIGGER_CATALOG 31
 #define SQL_DIAG_TRIGGER_SCHEMA 32
 #define SQL_DIAG_TRIGGER_NAME 33
 #define SQL_DIAG_TRANSACTIONS_COMMITTED 34
 #define SQL_DIAG_TRANSACTIONS_ROLLED_BACK 35
 #define SQL_DIAG_TRANSACTION_ACTIVE 36
 #define SQL_DIAG_PARAMETER_MODE 37
 #define SQL_DIAG_PARAMETER_ORDINAL_POSITION 38
 /* Dynamic function codes returned in diagnostics area */
 #define SQL_DIAG_ALTER_DOMAIN 3
 #define SQL_DIAG_ALTER_TABLE 4
 #define SQL_DIAG_CALL 7
 #define SQL_DIAG_CREATE_ASSERTION 6
 #define SQL_DIAG_CREATE_CHARACTER_SET 8
 #define SQL_DIAG_CREATE_COLLATION 10
 #define SQL_DIAG_CREATE_DOMAIN 23
 #define SQL_DIAG_CREATE_SCHEMA 64
 #define SQL_DIAG_CREATE_TABLE 77
 #define SQL_DIAG_CREATE_TRANSLATION 79
 #define SQL_DIAG_CREATE_VIEW 84
 #define SQL_DIAG_DELETE_WHERE 19
 #define SQL_DIAG_DROP_ASSERTION 24
 #define SQL_DIAG_DROP_CHARACTER_SET 25
 #define SQL_DIAG_DROP_COLLATION 26
 #define SQL_DIAG_DROP_DOMAIN 27
 #define SQL_DIAG_DROP_SCHEMA 31
 #define SQL_DIAG_DROP_TABLE 32
 #define SQL_DIAG_DROP_TRANSLATION 33
 #define SQL_DIAG_DROP_VIEW 36
 #define SQL_DIAG_DYNAMIC_DELETE_CURSOR 54
 #define SQL_DIAG_DYNAMIC_UPDATE_CURSOR 55
 #define SQL_DIAG_GRANT 48
 #define SQL_DIAG_INSERT 50
 #define SQL_DIAG_MERGE 128
 #define SQL_DIAG_REVOKE 59
 #define SQL_DIAG_SELECT 41
 #define SQL_DIAG_SELECT_CURSOR 85
 #define SQL_DIAG_SET_CATALOG 66
 #define SQL_DIAG_SET_CONSTRAINT 68
 #define SQL_DIAG_SET_NAMES 72

318 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_DIAG_SET_SCHEMA 74
 #define SQL_DIAG_SET_SESSION_AUTHORIZATION 76
 #define SQL_DIAG_SET_TIME_ZONE 71
 #define SQL_DIAG_SET_TRANSACTION 75
 #define SQL_DIAG_UNKNOWN_STATEMENT 0
 #define SQL_DIAG_UPDATE_WHERE 82
 /* SQL data type codes */
 #define SQL_CHAR 1
 #define SQL_NUMERIC 2
 #define SQL_DECIMAL 3
 #define SQL_INTEGER 4
 #define SQL_SMALLINT 5
 #define SQL_FLOAT 6
 #define SQL_REAL 7
 #define SQL_DOUBLE 8
 #define SQL_DATETIME 9
 #define SQL_INTERVAL 10
 #define SQL_VARCHAR 12
 #define SQL_BOOLEAN 16
 #define SQL_UDT 17
 #define SQL_UDT_LOCATOR 18
 #define SQL_ROW 19
 #define SQL_REF 20
 #define SQL_BIGINT 25
 #define SQL_BLOB 30
 #define SQL_BLOB_LOCATOR 31
 #define SQL_CLOB 40
 #define SQL_CLOB_LOCATOR 41
 #define SQL_ARRAY 50
 #define SQL_ARRAY_LOCATOR 51
 #define SQL_MULTISET 55
 #define SQL_MULTISET_LOCATOR 56
 #define SQL_BINARY 60
 #define SQL_VARBINARY 61
 /* Concise codes for datetime and interval data types */
 #define SQL_TYPE_DATE 91
 #define SQL_TYPE_TIME 92
 #define SQL_TYPE_TIME_WITH_TIMEZONE 94
 #define SQL_TYPE_TIMESTAMP 93
 #define SQL_TYPE_TIMESTAMP_WITH_TIMEZONE 95
 #define SQL_INTERVAL_DAY 103
 #define SQL_INTERVAL_DAY_TO_HOUR 108
 #define SQL_INTERVAL_DAY_TO_MINUTE 109
 #define SQL_INTERVAL_DAY_TO_SECOND 110
 #define SQL_INTERVAL_HOUR 104
 #define SQL_INTERVAL_HOUR_TO_MINUTE 111
 #define SQL_INTERVAL_HOUR_TO_SECOND 112
 #define SQL_INTERVAL_MINUTE 105
 #define SQL_INTERVAL_MINUTE_TO_SECOND 113
 #define SQL_INTERVAL_MONTH 102
 #define SQL_INTERVAL_SECOND 106
 #define SQL_INTERVAL_YEAR 101
 #define SQL_INTERVAL_YEAR_TO_MONTH 107
 /* User-defined data type codes */
 #define SQL_DISTINCT 1
 #define SQL_STRUCTURED 2
 /* GetTypeInfo() request for all data types */

Typical header files 319

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_ALL_TYPES 0
 /* BindCol() and BindParameter() default conversion code */
 #define SQL_DEFAULT 99
 /* GetData() and \() code indicating that the
 application parameter descriptor specifies the data type */
 #define SQL_APD_TYPE -99
 #define SQL_ARD_TYPE -99
 /* Date/time type subcodes */
 #define SQL_CODE_DATE 1
 #define SQL_CODE_TIME 2
 #define SQL_CODE_TIMESTAMP 3
 #define SQL_CODE_TIME_ZONE 4
 #define SQL_CODE_TIMESTAMP_ZONE 5
 /* Interval qualifier codes */
 #define SQL_DAY 3
 #define SQL_DAY_TO_HOUR 8
 #define SQL_DAY_TO_MINUTE 9
 #define SQL_DAY_TO_SECOND 10
 #define SQL_HOUR 4
 #define SQL_HOUR_TO_MINUTE 11
 #define SQL_HOUR_TO_SECOND 12
 #define SQL_MINUTE 5
 #define SQL_MINUTE_TO_SECOND 13
 #define SQL_MONTH 2
 #define SQL_SECOND 6
 #define SQL_YEAR 1
 #define SQL_YEAR_TO_MONTH 7
 /* CLI option values */
 #define SQL_FALSE 0
 #define SQL_TRUE 1
 #define SQL_NONSCROLLABLE 0
 #define SQL_SCROLLABLE 1
 #define SQL_NONHOLDABLE 0
 #define SQL_HOLDABLE 1
 #define SQL_INITIALLY_DEFERRED 5
 #define SQL_INITIALLY_IMMEDIATE 6
 #define SQL_NOT_DEFERRABLE 7
 /* Parameter mode values */
 #define SQL_PARAM_MODE_IN 1
 #define SQL_PARAM_MODE_OUT 4
 #define SQL_PARAM_MODE_INOUT 2
 /* Codes used for FetchOrientation */
 #define SQL_FETCH_NEXT 1
 #define SQL_FETCH_FIRST 2
 #define SQL_FETCH_LAST 3
 #define SQL_FETCH_PRIOR 4
 #define SQL_FETCH_ABSOLUTE 5
 #define SQL_FETCH_RELATIVE 6
 /* Values of NULLABLE field in descriptor */
 #define SQL_NO_NULLS 0
 #define SQL_NULLABLE 1
 /* Values returned by GetTypeInfo for the SEARCHABLE column */
 #define SQL_PRED_NONE 0
 #define SQL_PRED_CHAR 1
 #define SQL_PRED_BASIC 2
 /* Values of UNNAMED field in descriptor */
 #define SQL_NAMED 0

320 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_UNNAMED 1
 /* Values of ALLOC_TYPE field in descriptor */
 #define SQL_DESC_ALLOC_AUTO 1
 #define SQL_DESC_ALLOC_USER 2
 /* EndTran() options */
 #define SQL_COMMIT 0
 #define SQL_ROLLBACK 1
 #define SQL_SAVEPOINT_NAME_ROLLBACK 2
 #define SQL_SAVEPOINT_NAME_RELEASE 4
 #define SQL_COMMIT_AND_CHAIN 6
 #define SQL_ROLLBACK_AND_CHAIN 7
 /* FreeStmt() options */
 #define SQL_CLOSE_CURSOR 0
 #define SQL_FREE_HANDLE 1
 #define SQL_UNBIND_COLUMNS 2
 #define SQL_UNBIND_PARAMETERS 3
 #define SQL_REALLOCATE 4
 /* Provided for backwards compatibility */
 #define SQL_CLOSE 0
 #define SQL_DROP 1
 #define SQL_UNBIND 2
 #define SQL_RESET_PARAMS 3
 /* Null handle used when allocating HENV */
 #define SQL_NULL_HANDLE 0L
 /* Null handles returned by AllocHandle() */
 #define SQL_NULL_HENV SQL_NULL_HANDLE
 #define SQL_NULL_HDBC SQL_NULL_HANDLE
 #define SQL_NULL_HSTMT SQL_NULL_HANDLE
 #define SQL_NULL_HDESC SQL_NULL_HANDLE
 /* GetFunctions values to identify CLI routines */
 #define SQL_API_SQLALLOCCONNECT 1
 #define SQL_API_SQLALLOCENV 2
 #define SQL_API_SQLALLOCHANDLE 1001
 #define SQL_API_SQLALLOCSTMT 3
 #define SQL_API_SQLBINDCOL 4
 #define SQL_API_SQLBINDPARAMETER 72
 #define SQL_API_SQLCANCEL 5
 #define SQL_API_SQLCLOSECURSOR 1003
 #define SQL_API_SQLCOLATTRIBUTE 6
 #define SQL_API_SQLCOLUMNPRIVILEGES 56
 #define SQL_API_SQLCOLUMNS 40
 #define SQL_API_SQLCONNECT 7
 #define SQL_API_SQLCOPYDESC 1004
 #define SQL_API_SQLDATASOURCES 57
 #define SQL_API_SQLDESCRIBECOL 8
 #define SQL_API_SQLDISCONNECT 9
 #define SQL_API_SQLENDTRAN 1005
 #define SQL_API_SQLERROR 10
 #define SQL_API_SQLEXECDIRECT 11
 #define SQL_API_SQLEXECUTE 12
 #define SQL_API_SQLFETCH 13
 #define SQL_API_SQLFETCHSCROLL 1021
 #define SQL_API_SQLFOREIGNKEYS 60
 #define SQL_API_SQLFREECONNECT 14
 #define SQL_API_SQLFREEENV 15
 #define SQL_API_SQLFREEHANDLE 1006
 #define SQL_API_SQLFREESTMT 16

Typical header files 321

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_API_SQLGETCONNECTATTR 1007
 #define SQL_API_SQLGETCURSORNAME 17
 #define SQL_API_SQLGETDATA 43
 #define SQL_API_SQLGETDESCFIELD 1008
 #define SQL_API_SQLGETDESCREC 1009
 #define SQL_API_SQLGETDIAGFIELD 1010
 #define SQL_API_SQLGETDIAGREC 1011
 #define SQL_API_SQLGETENVATTR 1012
 #define SQL_API_SQLGETFEATUREINFO 1027
 #define SQL_API_SQLGETFUNCTIONS 44
 #define SQL_API_SQLGETINFO 45
 #define SQL_API_SQLGETLENGTH 1022
 #define SQL_API_SQLGETPARAMDATA 1025
 #define SQL_API_SQLGETPOSITION 1023
 #define SQL_API_SQLGETSESSIONINFO 1028
 #define SQL_API_SQLGETSTMTATTR 1014
 #define SQL_API_SQLGETSUBSTRING 1024
 #define SQL_API_SQLGETTYPEINFO 47
 #define SQL_API_SQLMORERESULTS 61
 #define SQL_API_SQLNEXTRESULT 73
 #define SQL_API_SQLNUMRESULTCOLS 18
 #define SQL_API_SQLPARAMDATA 48
 #define SQL_API_SQLPREPARE 19
 #define SQL_API_SQLPRIMARYKEYS 65
 #define SQL_API_SQLPUTDATA 49
 #define SQL_API_SQLROWCOUNT 20
 #define SQL_API_SQLSETCONNECTATTR 1016
 #define SQL_API_SQLSETCURSORNAME 21
 #define SQL_API_SQLSETDESCFIELD 1017
 #define SQL_API_SQLSETDESCREC 1018
 #define SQL_API_SQLSETENVATTR 1019
 #define SQL_API_SQLSETSTMTATTR 1020
 #define SQL_API_SQLSPECIALCOLUMNS 52
 #define SQL_API_SQLSTARTTRAN 74
 #define SQL_API_SQLTABLES 54
 #define SQL_API_SQLTABLEPRIVILEGES 70
 /* Information requested by GetInfo() */
 #define SQL_MAXIMUM_DRIVER_CONNECTIONS 0
 #define SQL_MAXIMUM_CONCURRENT_ACTIVITIES 1
 #define SQL_DATA_SOURCE_NAME 2
 #define SQL_FETCH_DIRECTION 8
 #define SQL_SERVER_NAME 13
 #define SQL_SEARCH_PATTERN_ESCAPE 14
 #define SQL_DBMS_NAME 17
 #define SQL_DBMS_VERSION 18
 #define SQL_CURSOR_COMMIT_BEHAVIOR 23
 #define SQL_DATA_SOURCE_READ_ONLY 25
 #define SQL_DEFAULT_TRANSACTION_ISOLATION 26
 #define SQL_IDENTIFIER_CASE 28
 #define SQL_MAXIMUM_COLUMN_NAME_LENGTH 30
 #define SQL_MAXIMUM_CURSOR_NAME_LENGTH 31
 #define SQL_MAXIMUM_SCHEMA_NAME_LENGTH 32
 #define SQL_MAXIMUM_CATALOG_NAME_LENGTH 34
 #define SQL_MAXIMUM_TABLE_NAME_LENGTH 35
 #define SQL_SCROLL_CONCURRENCY 43
 #define SQL_TRANSACTION_CAPABLE 46
 #define SQL_USER_NAME 47

322 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 #define SQL_TRANSACTION_ISOLATION_OPTION 72
 #define SQL_INTEGRITY 73
 #define SQL_GETDATA_EXTENSIONS 81
 #define SQL_NULL_COLLATION 85
 #define SQL_ALTER_TABLE 86
 #define SQL_ORDER_BY_COLUMNS_IN_SELECT 90
 #define SQL_SPECIAL_CHARACTERS 94
 #define SQL_MAXIMUM_COLUMNS_IN_GROUP_BY 97
 #define SQL_MAXIMUM_COLUMNS_IN_ORDER_BY 99
 #define SQL_MAXIMUM_COLUMNS_IN_SELECT 100
 #define SQL_MAXIMUM_COLUMNS_IN_TABLE 101
 #define SQL_MAXIMUM_TABLES_IN_SELECT 106
 #define SQL_MAXIMUM_USER_NAME_LENGTH 107
 #define SQL_OUTER_JOIN_CAPABILITIES 115
 #define SQL_CURSOR_SENSITIVITY 10001
 #define SQL_DESCRIBE_PARAMETER 10002
 #define SQL_CATALOG_NAME 10003
 #define SQL_COLLATING_SEQUENCE 10004
 #define SQL_MAXIMUM_IDENTIFIER_LENGTH 10005
 #define SQL_MAXIMUM_STMT_OCTETS 20000
 #define SQL_MAXIMUM_STMT_OCTETS_DATA 20001
 #define SQL_MAXIMUM_STMT_OCTETS_SCHEMA 20002
 /* Information requested by GetSessionInfo() */
 #define SQL_CURRENT_USER 47
 #define SQL_CURRENT_DEFAULT_TRANSFORM_GROUP 20004
 #define SQL_CURRENT_PATH 20005
 #define SQL_CURRENT_ROLE 20006
 #define SQL_SESSION_USER 20007
 #define SQL_SYSTEM_USER 20008
 #define SQL_CURRENT_CATALOG 20009
 #define SQL_CURRENT_SCHEMA 20010
 /* Statement attribute values for cursor sensitivity */
 #define SQL_ASENSITIVE 0x00000000L
 #define SQL_INSENSITIVE 0x00000001L
 #define SQL_SENSITIVE 0x00000002L
 /* Define SQL_UNSPECIFIED for backwards compatibiltiy */
 #define SQL_UNSPECIFIED SQL_ASENSITIVE
 /* SQL_ALTER_TABLE bitmasks */
 #define SQL_AT_ADD_COLUMN 0x00000001L
 #define SQL_AT_DROP_COLUMN 0x00000002L
 #define SQL_AT_ALTER_COLUMN 0x00000004L
 #define SQL_AT_ADD_CONSTRAINT 0x00000008L
 #define SQL_AT_DROP_CONSTRAINT 0x00000010L
 /* SQL_CURSOR_COMMIT_BEHAVIOR values */
 #define SQL_CB_DELETE 0
 #define SQL_CB_CLOSE 1
 #define SQL_CB_PRESERVE 2
 /* SQL_FETCH_DIRECTION bitmasks */
 #define SQL_FD_FETCH_NEXT 0x00000001L
 #define SQL_FD_FETCH_FIRST 0x00000002L
 #define SQL_FD_FETCH_LAST 0x00000004L
 #define SQL_FD_FETCH_PRIOR 0x00000008L
 #define SQL_FD_FETCH_ABSOLUTE 0x00000010L
 #define SQL_FD_FETCH_RELATIVE 0x00000020L
 /* SQL_GETDATA_EXTENSIONS bitmasks */
 #define SQL_GD_ANY_COLUMN 0x00000001L
 #define SQL_GD_ANY_ORDER 0x00000002L

Typical header files 323

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 /* SQL_IDENTIFIER_CASE values */
 #define SQL_IC_UPPER 1
 #define SQL_IC_LOWER 2
 #define SQL_IC_SENSITIVE 3
 #define SQL_IC_MIXED 4
 /* SQL_NULL_COLLATION values */
 #define SQL_NC_HIGH 1
 #define SQL_NC_LOW 2
 /* SQL_OUTER_JOIN_CAPABILITIES bitmasks */
 #define SQL_OUTER_JOIN_LEFT 0x00000001L
 #define SQL_OUTER_JOIN_RIGHT 0x00000002L
 #define SQL_OUTER_JOIN_FULL 0x00000004L
 #define SQL_OUTER_JOIN_NESTED 0x00000008L
 #define SQL_OUTER_JOIN_NOT_ORDERED 0x00000010L
 #define SQL_OUTER_JOIN_INNER 0x00000020L
 #define SQL_OUTER_JOIN_ALL_COMPARISON_OPS 0x00000040L
 /* SQL_SCROLL_CONCURRENCY bitmasks */
 #define SQL_SCCO_READ_ONLY 0x00000001L
 #define SQL_SCCO_LOCK 0x00000002L
 #define SQL_SCCO_OPT_ROWVER 0x00000004L
 #define SQL_SCCO_OPT_VALUES 0x00000008L
 /* SQL_TRANSACTION_CAPABLE values */
 #define SQL_TC_NONE 0
 #define SQL_TC_DML 1
 #define SQL_TC_ALL 2
 #define SQL_TC_DDL_COMMIT 3
 #define SQL_TC_DDL_IGNORE 4
 /* SQL_TRANSACTION_ISOLATION bitmasks */
 #define SQL_TRANSACTION_READ_UNCOMMITTED 0x00000001L
 #define SQL_TRANSACTION_READ_COMMITTED 0x00000002L
 #define SQL_TRANSACTION_REPEATABLE_READ 0x00000004L
 #define SQL_TRANSACTION_SERIALIZABLE 0x00000008L
 /* SQL_TRANSACTION_ACCESS_MODE bitmasks */
 #define SQL_TRANSACTION_READ_ONLY 0x00000001L
 #define SQL_TRANSACTION_READ_WRITE 0x00000002L
/* Column types and scopes in SpecialColumns */
 #define SQL_BEST_ROWID 1
 #define SQL_SCOPE_CURROW 0
 #define SQL_SCOPE_TRANSACTION 1
 #define SQL_SCOPE_SESSION 2
 #define SQL_PC_UNKNOWN 0
 #define SQL_PC_NOT_PSEUDO 1
 #define SQL_PC_PSEUDO 2
/* Foreign Key UPDATE and DELETE rules */
 #define SQL_CASCADE 0
 #define SQL_RESTRICT 1
 #define SQL_SET_NULL 2
 #define SQL_NO_ACTION 3
 #define SQL_SET_DEFAULT 4
 /* Special parameter values */
 #define SQL_ALL_CATALOGS '%'
 #define SQL_ALL_SCHEMAS '%'
 #define SQL_ALL_TABLE_TYPES '%'
 /* Function prototypes */
 SQLRETURN SQLAllocConnect(SQLHENV EnvironmentHandle,
 SQLHDBC *ConnectionHandle);
 SQLRETURN SQLAllocEnv(SQLHENV *EnvironmentHandle);

324 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 SQLRETURN SQLAllocHandle(SQLSMALLINT HandleType,
 SQLINTEGER InputHandle, SQLINTEGER *OutputHandle);
 SQLRETURN SQLAllocStmt(SQLHDBC ConnectionHandle,
 SQLHSTMT *StatementHandle);
 SQLRETURN SQLBindCol(SQLHSTMT StatementHandle,
 SQLSMALLINT ColumnNumber, SQLSMALLINT BufferType,
 SQLPOINTER Data, SQLINTEGER BufferLength,
 SQLINTEGER *StrLen_or_Ind);
 SQLRETURN SQLBindParameter(SQLHSTMT StatementHandle,
 SQLSMALLINT ParamNumber, SQLSMALLINT InputOutputMode,
 SQLSMALLINT ValueType, SQLSMALLINT ParameterType,
 SQLINTEGER ColumnSize, SQLSMALLINT DecimalDigits,
 SQLPOINTER ParameterValue, SQLINTEGER BufferLength,
 SQLINTEGER *StrLen_or_Ind);
 SQLRETURN SQLCancel(SQLHSTMT StatementHandle);
 SQLRETURN SQLCloseCursor(SQLHSTMT StatementHandle);
 SQLRETURN SQLColAttribute(SQLHSTMT StatementHandle,
 SQLSMALLINT ColumnNumber, SQLSMALLINT FieldIdentifier,
 SQLCHAR *CharacterAttribute, SQLSMALLINT BufferLength,
 SQLSMALLINT *StringLength, SQLINTEGER *NumericAttribute);
 SQLRETURN SQLColumnPrivileges(SQLHSTMT StatementHandle,
 SQLCHAR *CatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *SchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *TableName, SQLSMALLINT NameLength3,
 SQLCHAR *ColumnName, SQLSMALLINT NameLength4);
 SQLRETURN SQLColumns(SQLHSTMT StatementHandle,
 SQLCHAR *CatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *SchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *TableName, SQLSMALLINT NameLength3,
 SQLCHAR *ColumnName, SQLSMALLINT NameLength4);
 SQLRETURN SQLConnect(SQLHDBC ConnectionHandle,
 SQLCHAR *ServerName, SQLSMALLINT NameLength1,
 SQLCHAR *UserName, SQLSMALLINT NameLength2,
 SQLCHAR *Authentication, SQLSMALLINT NameLength3);
 SQLRETURN SQLCopyDesc(SQLHDESC SourceDescHandle,
 SQLHDESC TargetDescHandle);
 SQLRETURN SQLDataSources(SQLHENV EnvironmentHandle,
 SQLSMALLINT Direction, SQLCHAR *ServerName,
 SQLSMALLINT BufferLength1, SQLSMALLINT *NameLength1,
 SQLCHAR *Description, SQLSMALLINT BufferLength2,
 SQLSMALLINT *NameLength2);
 SQLRETURN SQLDescribeCol(SQLHSTMT StatementHandle,
 SQLSMALLINT ColumnNumber, SQLCHAR *ColumnName,
 SQLSMALLINT BufferLength, SQLSMALLINT *NameLength,
 SQLSMALLINT *DataType, SQLINTEGER *ColumnSize,
 SQLSMALLINT *DecimalDigits, SQLSMALLINT *Nullable);
 SQLRETURN SQLDisconnect(SQLHDBC ConnectionHandle);
 SQLRETURN SQLEndTran(SQLSMALLINT HandleType, SQLINTEGER Handle,
 SQLSMALLINT CompletionType);
 SQLRETURN SQLError(SQLHENV EnvironmentHandle,
 SQLHDBC ConnectionHandle, SQLHSTMT StatementHandle,
 SQLCHAR *Sqlstate, SQLINTEGER *NativeError,
 SQLCHAR *MessageText, SQLSMALLINT BufferLength,
 SQLSMALLINT *TextLength);
 SQLRETURN SQLExecDirect(SQLHSTMT StatementHandle,
 SQLCHAR *StatementText, SQLINTEGER TextLength);
 SQLRETURN SQLExecute(SQLHSTMT StatementHandle);

Typical header files 325

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 SQLRETURN SQLFetch(SQLHSTMT StatementHandle);
 SQLRETURN SQLFetchScroll(SQLHSTMT StatementHandle,
 SQLSMALLINT FetchOrientation, SQLINTEGER FetchOffset);
 SQLRETURN SQLForeignKeys(SQLHSTMT StatementHandle,
 SQLCHAR *PKCatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *PKSchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *PKTableName, SQLSMALLINT NameLength3,
 SQLCHAR *FKCatalogName, SQLSMALLINT NameLength4,
 SQLCHAR *FKSchemaName, SQLSMALLINT NameLength5,
 SQLCHAR *FKTableName, SQLSMALLINT NameLength6);
 SQLRETURN SQLFreeConnect(SQLHDBC ConnectionHandle);
 SQLRETURN SQLFreeEnv(SQLHENV EnvironmentHandle);
 SQLRETURN SQLFreeHandle(SQLSMALLINT HandleType,
 SQLINTEGER Handle);
 SQLRETURN SQLFreeStmt(SQLHSTMT StatementHandle, SQLSMALLINT Option);
 SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,
 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER BufferLength, SQLINTEGER *StringLength);
 SQLRETURN SQLGetCursorName(SQLHSTMT StatementHandle,
 SQLCHAR *CursorName, SQLSMALLINT BufferLength,
 SQLSMALLINT *NameLength);
 SQLRETURN SQLGetData(SQLHSTMT StatementHandle,
 SQLSMALLINT ColumnNumber, SQLSMALLINT TargetType,
 SQLPOINTER TargetValue, SQLINTEGER BufferLength,
 SQLINTEGER *StrLen_or_Ind);
 SQLRETURN SQLGetDescField(SQLHDESC DescriptorHandle,
 SQLSMALLINT RecordNumber, SQLSMALLINT FieldIdentifier,
 SQLPOINTER Value, SQLINTEGER BufferLength,
 SQLINTEGER *StringLength);
 SQLRETURN SQLGetDescRec(SQLHDESC DescriptorHandle,
 SQLSMALLINT RecordNumber, SQLCHAR *Name,
 SQLSMALLINT BufferLength, SQLSMALLINT *NameLength,
 SQLSMALLINT *Type, SQLSMALLINT *SubType,
 SQLINTEGER *Length, SQLSMALLINT *Precision,
 SQLSMALLINT *Scale, SQLSMALLINT *Nullable);
 SQLRETURN SQLGetDiagField(SQLSMALLINT HandleType,
 SQLINTEGER Handle, SQLSMALLINT RecordNumber,
 SQLSMALLINT DiagIdentifier, SQLPOINTER DiagInfo,
 SQLSMALLINT BufferLength, SQLSMALLINT *StringLength);
 SQLRETURN SQLGetDiagRec(SQLSMALLINT HandleType, SQLINTEGER Handle,
 SQLSMALLINT RecordNumber, SQLCHAR *Sqlstate,
 SQLINTEGER *NativeError, SQLCHAR *MessageText,
 SQLSMALLINT BufferLength, SQLSMALLINT *TextLength);
 SQLRETURN SQLGetEnvAttr(SQLHENV EnvironmentHandle,
 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER BufferLength, SQLINTEGER *StringLength);
 SQLRETURN SQLGetFeatureInfo(SQLHDBC ConnectionHandle,
 SQLCHAR *FeatureType, SQLSMALLINT FeatureTypeLength,
 SQLCHAR *FeatureId, SQLSMALLINT FeatureIdLength,
 SQLCHAR *SubFeatureId, SQLSMALLINT SubFeatureIdLength,
 SQLSMALLINT *Supported);
 SQLRETURN SQLGetFunctions(SQLHDBC ConnectionHandle,
 SQLSMALLINT FunctionId, SQLSMALLINT *Supported);
 SQLRETURN SQLGetInfo(SQLHDBC ConnectionHandle,
 SQLSMALLINT InfoType, SQLPOINTER InfoValue,
 SQLSMALLINT BufferLength, SQLSMALLINT *StringLength);
 SQLRETURN SQLGetLength(SQLHSTMT StatementHandle,

326 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 SQLSMALLINT LocatorType, SQLINTEGER Locator,
 SQLINTEGER *StringLength, SQLINTEGER *IndicatorValue);
 SQLRETURN SQLGetParamData(SQLHSTMT StatementHandle,
 SQLSMALLINT ParameterNumber, SQLSMALLINT TargetType,
 SQLPOINTER TargetValue, SQLINTEGER BufferLength,
 SQLINTEGER *StrLen_or_Ind);
 SQLRETURN SQLGetPosition(SQLHSTMT StatementHandle,
 SQLSMALLINT LocatorType, SQLINTEGER SourceLocator,
 SQLINTEGER SearchLocator, SQLCHAR *SearchLiteral,
 SQLINTEGER SearchLiteralLength, SQLINTEGER FromPosition,
 SQLINTEGER *LocatedAt, SQLINTEGER *IndicatorValue);
 SQLRETURN SQLGetSessionInfo(SQLHDBC ConnectionHandle,
 SQLSMALLINT InfoType, SQLPOINTER InfoValue,
 SQLSMALLINT BufferLength, SQLSMALLINT *StringLength);
 SQLRETURN SQLGetStmtAttr(SQLHSTMT StatementHandle,
 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER BufferLength, SQLINTEGER *StringLength);
 SQLRETURN SQLGetSubString(SQLHSTMT StatementHandle,
 SQLSMALLINT LocatorType, SQLINTEGER SourceLocator,
 SQLINTEGER FromPosition, SQLINTEGER ForLength,
 SQLSMALLINT TargetType, SQLPOINTER TargetValue,
 SQLINTEGER BufferLength, SQLINTEGER *StringLength,
 SQLINTEGER *IndicatorValue);
 SQLRETURN SQLGetTypeInfo(SQLHSTMT StatementHandle,
 SQLSMALLINT DataType);
 SQLRETURN SQLMoreResults(SQLHSTMT StatementHandle);
 SQLRETURN SQLNextResult(SQLHSTMT StatementHandle1,
 SQLHSTMT *StatementHandle2);
 SQLRETURN SQLNumResultCols(SQLHSTMT StatementHandle,
 SQLSMALLINT *ColumnCount);
 SQLRETURN SQLParamData(SQLHSTMT StatementHandle,
 SQLPOINTER *Value);
 SQLRETURN SQLPrepare(SQLHSTMT StatementHandle,
 SQLCHAR *StatementText, SQLINTEGER TextLength);
 SQLRETURN SQLPrimaryKeys(SQLHSTMT StatementHandle,
 SQLCHAR *CatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *SchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *TableName, SQLSMALLINT NameLength3);
 SQLRETURN SQLPutData(SQLHSTMT StatementHandle,
 SQLPOINTER Data, SQLINTEGER StrLen_or_Ind);
 SQLRETURN SQLRowCount(SQLHSTMT StatementHandle,
 SQLINTEGER *RowCount);
 SQLRETURN SQLSetConnectAttr(SQLHDBC ConnectionHandle,
 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER StringLength);
 SQLRETURN SQLSetCursorName(SQLHSTMT StatementHandle,
 SQLCHAR *CursorName, SQLSMALLINT NameLength);
 SQLRETURN SQLSetDescField(SQLHDESC DescriptorHandle,
 SQLSMALLINT RecordNumber, SQLSMALLINT FieldIdentifier,
 SQLPOINTER Value, SQLINTEGER BufferLength);
 SQLRETURN SQLSetDescRec(SQLHDESC DescriptorHandle,
 SQLSMALLINT RecordNumber, SQLSMALLINT Type,
 SQLSMALLINT SubType, SQLINTEGER Length,
 SQLSMALLINT Precision, SQLSMALLINT Scale,
 SQLPOINTER Data, SQLINTEGER *StringLength,
 SQLINTEGER *Indicator);
 SQLRETURN SQLSetEnvAttr(SQLHENV EnvironmentHandle,

Typical header files 327

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER StringLength);
 SQLRETURN SQLSetStmtAttr(SQLHSTMT StatementHandle,
 SQLINTEGER Attribute, SQLPOINTER Value,
 SQLINTEGER StringLength);
 SQLRETURN SQLSpecialColumns(SQLHSTMT StatementHandle,
 SQLSMALLINT IdentifierType, SQLCHAR *CatalogName,
 SQLSMALLINT NameLength1, SQLCHAR *SchemaName,
 SQLSMALLINT NameLength2, SQLCHAR *TableName,
 SQLSMALLINT NameLength3, SQLSMALLINT Scope,
 SQLSMALLINT Nullable);
 SQLRETURN SQLStartTran(SQLSMALLINT HandleType,
 SQLINTEGER Handle, SQLINTEGER AccessMode,
 SQLINTEGER IsolationLevel);
 SQLRETURN SQLTablePrivileges(SQLHSTMT StatementHandle,
 SQLCHAR *CatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *SchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *TableName, SQLSMALLINT NameLength3);
 SQLRETURN SQLTables(SQLHSTMT StatementHandle,
 SQLCHAR *CatalogName, SQLSMALLINT NameLength1,
 SQLCHAR *SchemaName, SQLSMALLINT NameLength2,
 SQLCHAR *TableName, SQLSMALLINT NameLength3,
 SQLCHAR *TableType, SQLSMALLINT NameLength4);

A.2 COBOL library item SQLCLI

This Subclause is modified by Subclause E.2, “COBOL Library Item SQLCLI”, in ISO/IEC 9075-9.

Here is a typical SQLCLI COBOL Library Item. COBOL applications include this library item into the
Working-Storage Section by containing the following statement:

 COPY SQLCLI.

The following file does not include prototypes of the SQL/CLI functions because COBOL applications are not
required to specify them.

The following file has been coded with example COBOL syntax. When this file is used with a conforming CLI
implementation, each ocurrence of “PIC S9(4) BINARY” should be replaced with the appropriate COBOL
data type for SMALLINT from Table 42, “SQL/CLI data type correspondences for COBOL”, and each
occurrence of “PIC S9(9) BINARY” should be replaced with the appropriate COBOL data type for INTEGER
from Table 42, “SQL/CLI data type correspondences for COBOL”.

 * SPECIAL LENGTH/INDICATOR VALUES
 01 SQL-NULL-DATA PIC S9(9) BINARY VALUE IS -1.
 01 SQL-DATA-AT-EXEC PIC S9(9) BINARY VALUE IS -2.
 * RETURN VALUES FROM FUNCTIONS
 01 SQL-SUCCESS PIC S9(4) BINARY VALUE IS 0.
 01 SQL-SUCCESS-WITH-INFO PIC S9(4) BINARY VALUE IS 1.
 01 SQL-NEED-DATA PIC S9(4) BINARY VALUE IS 99.
 01 SQL-NO-DATA PIC S9(4) BINARY VALUE IS 100.
 01 SQL-ERROR PIC S9(4) BINARY VALUE IS -1.
 01 SQL-INVALID-HANDLE PIC S9(4) BINARY VALUE IS -2.
 * ROW STATUS VALUES AFTER A CALL TO A FETCH FUNCTION

328 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.1 C header file SQLCLI.H

 01 SQL-ROW-SUCCESS PIC S9(4) BINARY VALUE IS 0.
 01 SQL-ROW-SUCCESS-WITH-INFO PIC S9(4) BINARY VALUE IS 6.
 01 SQL-ROW-ERROR PIC S9(4) BINARY VALUE IS 5.
 01 SQL-ROW-NO-ROW PIC S9(4) BINARY VALUE IS 3.
 * FLAGS FOR NULL-TERMINATED STRING
 01 SQL-NTS PIC S9(4) BINARY VALUE IS -3.
 01 SQL-NTSL PIC S9(9) BINARY VALUE IS -3.
 * MAXIMUM MESSAGE LENGTH
 01 SQL-MAXIMUM-MESSAGE-LENGTH PIC S9(4) BINARY VALUE IS 512.
 * ENVIRONMENT ATTRIBUTE
 01 SQL-ATTR-OUTPUT-NTS PIC S9(9) BINARY VALUE IS 10001.
 * CONNECTION ATTRIBUTE
 01 SQL-ATTR-AUTO-IPD PIC S9(9) BINARY VALUE IS 10001.
 01 SQL-ATTR-SAVEPOINT-NAME PIC S9(9) BINARY VALUE IS 10027.
 * HANDLE TYPE IDENTIFIERS
 01 SQL-HANDLE-ENV PIC S9(4) BINARY VALUE IS 1.
 01 SQL-HANDLE-DBC PIC S9(4) BINARY VALUE IS 2.
 01 SQL-HANDLE-STMT PIC S9(4) BINARY VALUE IS 3.
 01 SQL-HANDLE-DESC PIC S9(4) BINARY VALUE IS 4.
 * STATEMENT ATTRIBUTES
 01 SQL-ATTR-CURSOR-SCROLLABLE PIC S9(9) BINARY VALUE IS -1.
 01 SQL-ATTR-CURSOR-SENSITIVITY PIC S9(9) BINARY VALUE IS -2.
 01 SQL-ATTR-CURSOR-HOLDABLE PIC S9(9) BINARY VALUE IS -3.
 01 SQL-ATTR-APP-ROW-DESC PIC S9(9) BINARY VALUE IS 10010.
 01 SQL-ATTR-APP-PARAM-DESC PIC S9(9) BINARY VALUE IS 10011.
 01 SQL-ATTR-IMP-ROW-DESC PIC S9(9) BINARY VALUE IS 10012.
 01 SQL-ATTR-IMP-PARAM-DESC PIC S9(9) BINARY VALUE IS 10013.
 01 SQL-ATTR-METADATA-ID PIC S9(9) BINARY VALUE IS 10014.
 01 SQL-ATTR-CURRENT-OF-POSITION PIC S9(9) BINARY VALUE IS 10027.
 01 SQL-ATTR-NEST-DESCRIPTOR PIC S9(9) BINARY VALUE IS 10029.
 * IDENTIFIERS OF FIELDS IN THE SQL/CLI ITEM DESCRIPTOR AREA
 01 SQL-DESC-ARRAY-SIZE PIC S9(4) BINARY VALUE IS 20.
 01 SQL-DESC-ARRAY-STATUS-POINTER PIC S9(4) BINARY VALUE IS 21.
 01 SQL-DESC-DATETIME-INTERVAL-PRECISION PIC S9(4) BINARY VALUE IS 26.
 01 SQL-DESC-ROWS-PROCESSED-POINTER PIC S9(4) BINARY VALUE IS 34.
 01 SQL-DESC-COUNT PIC S9(4) BINARY VALUE IS 1001.
 01 SQL-DESC-TYPE PIC S9(4) BINARY VALUE IS 1002.
 01 SQL-DESC-LENGTH PIC S9(4) BINARY VALUE IS 1003.
 01 SQL-DESC-OCTET-LENGTH-POINTER PIC S9(4) BINARY VALUE IS 1004.
 01 SQL-DESC-PRECISION PIC S9(4) BINARY VALUE IS 1005.
 01 SQL-DESC-SCALE PIC S9(4) BINARY VALUE IS 1006.
 01 SQL-DESC-DATETIME-INTERVAL-CODE PIC S9(4) BINARY VALUE IS 1007.
 01 SQL-DESC-NULLABLE PIC S9(4) BINARY VALUE IS 1008.
 01 SQL-DESC-INDICATOR-POINTER PIC S9(4) BINARY VALUE IS 1009.
 01 SQL-DESC-DATA-POINTER PIC S9(4) BINARY VALUE IS 1010.
 01 SQL-DESC-NAME PIC S9(4) BINARY VALUE IS 1011.
 01 SQL-DESC-UNNAMED PIC S9(4) BINARY VALUE IS 1012.
 01 SQL-DESC-OCTET-LENGTH PIC S9(4) BINARY VALUE IS 1013.
 01 SQL-DESC-COLLATION-CATALOG PIC S9(4) BINARY VALUE IS 1015.
 01 SQL-DESC-COLLLATION-SCHEMA PIC S9(4) BINARY VALUE IS 1016.
 01 SQL-DESC-COLLATION-NAME PIC S9(4) BINARY VALUE IS 1017.
 01 SQL-DESC-CHARACTER-SET-CATALOG PIC S9(4) BINARY VALUE IS 1018.
 01 SQL-DESC-CHARACTER-SET-SCHEMA PIC S9(4) BINARY VALUE IS 1019.
 01 SQL-DESC-CHARACTER-SET-NAME PIC S9(4) BINARY VALUE IS 1020.
 01 SQL-DESC-PARAMETER-MODE PIC S9(4) BINARY VALUE IS 1021.
 01 SQL-DESC-PARAMETER-ORDINAL-POSITION PIC S9(4) BINARY VALUE IS 1022.
 01 SQL-DESC-PARAMETER-SPECIFIC-CATALOG PIC S9(4) BINARY VALUE IS 1023.

Typical header files 329

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-DESC-PARAMETER-SPECIFIC-SCHEMA PIC S9(4) BINARY VALUE IS 1024.
 01 SQL-DESC-PARAMETER-SPECIFIC-NAME PIC S9(4) BINARY VALUE IS 1025.
 01 SQL-DESC-UDT-CATALOG PIC S9(4) BINARY VALUE IS 1026.
 01 SQL-DESC-UDT-SCHEMA PIC S9(4) BINARY VALUE IS 1027.
 01 SQL-DESC-UDT-NAME PIC S9(4) BINARY VALUE IS 1028.
 01 SQL-DESC-KEY-TYPE PIC S9(4) BINARY VALUE IS 1029.
 01 SQL-DESC-KEY-MEMBER PIC S9(4) BINARY VALUE IS 1030.
 01 SQL-DESC-DYNAMIC-FUNCTION PIC S9(4) BINARY VALUE IS 1031.
 01 SQL-DESC-DYNAMIC-FUNCTION-CODE PIC S9(4) BINARY VALUE IS 1032.
 01 SQL-DESC-SCOPE-CATALOG PIC S9(4) BINARY VALUE IS 1033.
 01 SQL-DESC-SCOPE-SCHEMA PIC S9(4) BINARY VALUE IS 1034.
 01 SQL-DESC-SCOPE-NAME PIC S9(4) BINARY VALUE IS 1035.
 01 SQL-DESC-SPECIFIC-SCOPE-CATALOG PIC S9(4) BINARY VALUE IS 1036.
 01 SQL-DESC-SPECIFIC-SCOPE-SCHEMA PIC S9(4) BINARY VALUE IS 1037.
 01 SQL-DESC-SPECIFIC-SCOPE-NAME PIC S9(4) BINARY VALUE IS 1038.
 01 SQL-DESC-CURRENT-TRANSFORM-GROUP PIC S9(4) BINARY VALUE IS 1039.
 01 SQL-DESC-CARDINALITY PIC S9(4) BINARY VALUE IS 1040.
 01 SQL-DESC-DEGREE PIC S9(4) BINARY VALUE IS 1041.
 01 SQL-DESC-LEVEL PIC S9(4) BINARY VALUE IS 1042.
 01 SQL-DESC-RETURNED-CARDINALITY-POINTER PIC S9(4) BINARY VALUE IS 1043.
 01 SQL-DESC-TOP-LEVEL-COUNT PIC S9(4) BINARY VALUE IS 1044.
 01 SQL-DESC-USER-DEFINED-TYPE-CODE PIC S9(4) BINARY VALUE IS 1045.
 01 SQL-DESC-ALLOC-TYPE PIC S9(4) BINARY VALUE IS 1099.
 * IDENTIFIERS OF FIELDS IN THE DIAGNOSTICS AREA
 01 SQL-DIAG-ROW-NUMBER PIC S9(4) BINARY VALUE IS -1248.
 01 SQL-DIAG-COLUMN-NUMBER PIC S9(4) BINARY VALUE IS -1247.
 01 SQL-DIAG-RETURNCODE PIC S9(4) BINARY VALUE IS 1.
 01 SQL-DIAG-NUMBER PIC S9(4) BINARY VALUE IS 2.
 01 SQL-DIAG-ROW-COUNT PIC S9(4) BINARY VALUE IS 3.
 01 SQL-DIAG-SQLSTATE PIC S9(4) BINARY VALUE IS 4.
 01 SQL-DIAG-NATIVE-CODE PIC S9(4) BINARY VALUE IS 5.
 01 SQL-DIAG-MESSAGE-TEXT PIC S9(4) BINARY VALUE IS 6.
 01 SQL-DIAG-DYNAMIC-FUNCTION PIC S9(4) BINARY VALUE IS 7.
 01 SQL-DIAG-CLASS-ORIGIN PIC S9(4) BINARY VALUE IS 8.
 01 SQL-DIAG-SUBCLASS-ORIGIN PIC S9(4) BINARY VALUE IS 9.
 01 SQL-DIAG-CONNECTION-NAME PIC S9(4) BINARY VALUE IS 10.
 01 SQL-DIAG-SERVER-NAME PIC S9(4) BINARY VALUE IS 11.
 01 SQL-DIAG-DYNAMIC-FUNCTION-CODE PIC S9(4) BINARY VALUE IS 12.
 01 SQL-DIAG-MORE PIC S9(4) BINARY VALUE IS 13.
 01 SQL-DIAG-CONDITION-NUMBER PIC S9(4) BINARY VALUE IS 14.
 01 SQL-DIAG-CONSTRAINT-CATALOG PIC S9(4) BINARY VALUE IS 15.
 01 SQL-DIAG-CONSTRAINT-SCHEMA PIC S9(4) BINARY VALUE IS 16.
 01 SQL-DIAG-CONSTRAINT-NAME PIC S9(4) BINARY VALUE IS 17.
 01 SQL-DIAG-CATALOG-NAME PIC S9(4) BINARY VALUE IS 18.
 01 SQL-DIAG-SCHEMA-NAME PIC S9(4) BINARY VALUE IS 19.
 01 SQL-DIAG-TABLE-NAME PIC S9(4) BINARY VALUE IS 20.
 01 SQL-DIAG-COLUMN-NAME PIC S9(4) BINARY VALUE IS 21.
 01 SQL-DIAG-CURSOR-NAME PIC S9(4) BINARY VALUE IS 22.
 01 SQL-DIAG-MESSAGE-LENGTH PIC S9(4) BINARY VALUE IS 23.
 01 SQL-DIAG-MESSAGE-OCTET-LENGTH PIC S9(4) BINARY VALUE IS 24.
 01 SQL-DIAG-CONDITION-IDENTIFIER PIC S9(4) BINARY VALUE IS 25.
 01 SQL-DIAG-PARAMETER-NAME PIC S9(4) BINARY VALUE IS 26.
 01 SQL-DIAG-ROUTINE-CATALOG PIC S9(4) BINARY VALUE IS 27.
 01 SQL-DIAG-ROUTINE_SCHEMA PIC S9(4) BINARY VALUE IS 28.
 01 SQL-DIAG-ROUTINE-NAME PIC S9(4) BINARY VALUE IS 29.
 01 SQL-DIAG-SPECIFIC-NAME PIC S9(4) BINARY VALUE IS 30.
 01 SQL-DIAG-TRIGGER-CATALOG PIC S9(4) BINARY VALUE IS 31.

330 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-DIAG-TRIGGER-SCHEMA PIC S9(4) BINARY VALUE IS 32.
 01 SQL-DIAG-TRIGGER-NAME PIC S9(4) BINARY VALUE IS 33.
 01 SQL-DIAG-TRANSACTIONS-COMMITTED PIC S9(4) BINARY VALUE IS 34.
 01 SQL-DIAG-TRANSACTIONS-ROLLED-BACK PIC S9(4) BINARY VALUE IS 35.
 01 SQL-DIAG-TRANSACTION-ACTIVE PIC S9(4) BINARY VALUE IS 36.
 01 SQL-DIAG-PARAMETER-MODE PIC S9(4) BINARY VALUE IS 37.
 01 SQL-DIAG-PARAMETER-ORDINAL-POSITION PIC S9(4) BINARY VALUE IS 38.
 * DYNAMIC FUNCTION CODES RETURNED IN DIAGNOSTICS AREA
 01 SQL-DIAG-ALTER-DOMAIN PIC S9(9) BINARY VALUE IS 3.
 01 SQL-DIAG-ALTER-TABLE PIC S9(9) BINARY VALUE IS 4.
 01 SQL-DIAG-CALL PIC S9(9) BINARY VALUE IS 7.
 01 SQL-DIAG-CREATE-ASSERTION PIC S9(9) BINARY VALUE IS 6.
 01 SQL-DIAG-CREATE-CHARACTER-SET PIC S9(9) BINARY VALUE IS 8.
 01 SQL-DIAG-CREATE-COLLATION PIC S9(9) BINARY VALUE IS 10.
 01 SQL-DIAG-CREATE-DOMAIN PIC S9(9) BINARY VALUE IS 23.
 01 SQL-DIAG-CREATE-SCHEMA PIC S9(9) BINARY VALUE IS 64.
 01 SQL-DIAG-CREATE-TABLE PIC S9(9) BINARY VALUE IS 77.
 01 SQL-DIAG-CREATE-TRANSLATION PIC S9(9) BINARY VALUE IS 79.
 01 SQL-DIAG-CREATE-VIEW PIC S9(9) BINARY VALUE IS 84.
 01 SQL-DIAG-DELETE-WHERE PIC S9(9) BINARY VALUE IS 19.
 01 SQL-DIAG-DROP-ASSERTION PIC S9(9) BINARY VALUE IS 24.
 01 SQL-DIAG-DROP-CHARACTER-SET PIC S9(9) BINARY VALUE IS 25.
 01 SQL-DIAG-DROP-COLLATION PIC S9(9) BINARY VALUE IS 26.
 01 SQL-DIAG-DROP-DOMAIN PIC S9(9) BINARY VALUE IS 27.
 01 SQL-DIAG-DROP-SCHEMA PIC S9(9) BINARY VALUE IS 31.
 01 SQL-DIAG-DROP-TABLE PIC S9(9) BINARY VALUE IS 32.
 01 SQL-DIAG-DROP-TRANSLATION PIC S9(9) BINARY VALUE IS 33.
 01 SQL-DIAG-DROP-VIEW PIC S9(9) BINARY VALUE IS 36.
 01 SQL-DIAG-DYNAMIC-DELETE-CURSOR PIC S9(9) BINARY VALUE IS 54.
 01 SQL-DIAG-DYNAMIC-UPDATE-CURSOR PIC S9(9) BINARY VALUE IS 55.
 01 SQL-DIAG-GRANT PIC S9(9) BINARY VALUE IS 48.
 01 SQL-DIAG-INSERT PIC S9(9) BINARY VALUE IS 50.
 01 SQL-DIAG-MERGE PIC S9(9) BINARY VALUE IS 128.
 01 SQL-DIAG-REVOKE PIC S9(9) BINARY VALUE IS 59.
 01 SQL-DIAG-SELECT PIC S9(9) BINARY VALUE IS 41.
 01 SQL-DIAG-SELECT-CURSOR PIC S9(9) BINARY VALUE IS 85.
 01 SQL-DIAG-SET-CATALOG PIC S9(9) BINARY VALUE IS 66.
 01 SQL-DIAG-SET-CONSTRAINT PIC S9(9) BINARY VALUE IS 68.
 01 SQL-DIAG-SET-NAMES PIC S9(9) BINARY VALUE IS 72.
 01 SQL-DIAG-SET-SCHEMA PIC S9(9) BINARY VALUE IS 74.
 01 SQL-DIAG-SET-SESSION-AUTHORIZATION PIC S9(9) BINARY VALUE IS 76.
 01 SQL-DIAG-SET-TIME-ZONE PIC S9(9) BINARY VALUE IS 71.
 01 SQL-DIAG-SET-TRANSACTION PIC S9(9) BINARY VALUE IS 75.
 01 SQL-DIAG-UNKNOWN-STATEMENT PIC S9(9) BINARY VALUE IS 0.
 01 SQL-DIAG-UPDATE-WHERE PIC S9(9) BINARY VALUE IS 82.
 * SQL DATA TYPE CODES
 01 SQL-CHAR PIC S9(4) BINARY VALUE IS 1.
 01 SQL-NUMERIC PIC S9(4) BINARY VALUE IS 2.
 01 SQL-DECIMAL PIC S9(4) BINARY VALUE IS 3.
 01 SQL-INTEGER PIC S9(4) BINARY VALUE IS 4.
 01 SQL-SMALLINT PIC S9(4) BINARY VALUE IS 5.
 01 SQL-FLOAT PIC S9(4) BINARY VALUE IS 6.
 01 SQL-REAL PIC S9(4) BINARY VALUE IS 7.
 01 SQL-DOUBLE PIC S9(4) BINARY VALUE IS 8.
 01 SQL-DATETIME PIC S9(4) BINARY VALUE IS 9.
 01 SQL-INTERVAL PIC S9(4) BINARY VALUE IS 10.
 01 SQL-VARCHAR PIC S9(4) BINARY VALUE IS 12.

Typical header files 331

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-BOOLEAN PIC S9(4) BINARY VALUE IS 16.
 01 SQL-UDT PIC S9(4) BINARY VALUE IS 17.
 01 SQL-UDT-LOCATOR PIC S9(4) BINARY VALUE IS 18.
 01 SQL-ROW PIC S9(4) BINARY VALUE IS 19.
 01 SQL-REF PIC S9(4) BINARY VALUE IS 20.
 01 SQL-BIGINT PIC S9(4) BINARY VALUE IS 25.
 01 SQL-BLOB PIC S9(4) BINARY VALUE IS 30.
 01 SQL-BLOB-LOCATOR PIC S9(4) BINARY VALUE IS 31.
 01 SQL-CLOB PIC S9(4) BINARY VALUE IS 40.
 01 SQL-CLOB-LOCATOR PIC S9(4) BINARY VALUE IS 41.
 01 SQL-ARRAY PIC S9(4) BINARY VALUE IS 50.
 01 SQL-ARRAY-LOCATOR PIC S9(4) BINARY VALUE IS 51.
 01 SQL-MULTISET PIC S9(4) BINARY VALUE IS 55.
 01 SQL-MULTISET-LOCATOR PIC S9(4) BINARY VALUE IS 56.
 01 SQL-BINARY PIC S9(4) BINARY VALUE IS 60.
 01 SQL-VARBINARY PIC S9(4) BINARY VALUE IS 61.
 * CONCISE CODES FOR DATETIME AND INTERVAL DATA TYPES
 01 SQL-TYPE-DATE PIC S9(4) BINARY VALUE IS 91.
 01 SQL-TYPE-TIME PIC S9(4) BINARY VALUE IS 92.
 01 SQL-TYPE-TIME-WITH-TIMEZONE PIC S9(4) BINARY VALUE IS 94.
 01 SQL-TYPE-TIMESTAMP PIC S9(4) BINARY VALUE IS 93.
 01 SQL-TYPE-TIMESTAMP-WITH-TIMEZONE PIC S9(4) BINARY VALUE IS 95.
 01 SQL-INTERVAL-DAY PIC S9(4) BINARY VALUE IS 103.
 01 SQL-INTERVAL-DAY-TO-HOUR PIC S9(4) BINARY VALUE IS 108.
 01 SQL-INTERVAL-DAY-TO-MINUTE PIC S9(4) BINARY VALUE IS 109.
 01 SQL-INTERVAL-DAY-TO-SECOND PIC S9(4) BINARY VALUE IS 112.
 01 SQL-INTERVAL-HOUR PIC S9(4) BINARY VALUE IS 104.
 01 SQL-INTERVAL-HOUR-TO-MINUTE PIC S9(4) BINARY VALUE IS 111.
 01 SQL-INTERVAL-HOUR-TO-SECOND PIC S9(4) BINARY VALUE IS 112.
 01 SQL-INTERVAL-MINUTE PIC S9(4) BINARY VALUE IS 105.
 01 SQL-INTERVAL-MINUTE-TO-SECOND PIC S9(4) BINARY VALUE IS 113.
 01 SQL-INTERVAL-MONTH PIC S9(4) BINARY VALUE IS 102.
 01 SQL-INTERVAL-SECOND PIC S9(4) BINARY VALUE IS 106.
 01 SQL-INTERVAL-YEAR PIC S9(4) BINARY VALUE IS 101.
 01 SQL-INTERVAL-YEAR-TO-MONTH PIC S9(4) BINARY VALUE IS 107.
 * USER-DEFINED DATA TYPE CODES
 01 SQL-DISTINCT PIC S9(4) BINARY VALUE IS 1.
 01 SQL-STRUCTURED PIC S9(4) BINARY VALUE IS 2.
 * SQLRGETTYPEINFO REQUEST FOR ALL DATA TYPES
 01 SQL-ALL-TYPES PIC S9(4) BINARY VALUE IS 0.
 * SQLRBINDCOL AND SQLRBINDPARAMETER DEFAULT CONVERSION CODE
 01 SQL-DEFAULT PIC S9(4) BINARY VALUE IS 99.
 * SQLRGETDATA AND GETPARAMDATA CODES INDICATING THAT THE APPLICATION
 * DESCRIPTOR SPECIFIES THE DATA TYPE
 01 SQL-APD-TYPE PIC S9(4) BINARY VALUE IS -99.
 01 SQL-ARD-TYPE PIC S9(4) BINARY VALUE IS -99.
 * DATE/TIME TYPE SUBCODES
 01 SQL-CODE-DATE PIC S9(4) BINARY VALUE IS 1.
 01 SQL-CODE-TIME PIC S9(4) BINARY VALUE IS 2.
 01 SQL-CODE-TIMESTAMP PIC S9(4) BINARY VALUE IS 3.
 01 SQL-CODE-TIME-ZONE PIC S9(4) BINARY VALUE IS 4.
 01 SQL-CODE-TIMESTAMP-ZONE PIC S9(4) BINARY VALUE IS 5.
 * INTERVAL QUALIFIER CODES
 01 SQL-DAY PIC S9(4) BINARY VALUE IS 3.
 01 SQL-DAY-TO-HOUR PIC S9(4) BINARY VALUE IS 8.
 01 SQL-DAY-TO-MINUTE PIC S9(4) BINARY VALUE IS 9.
 01 SQL-DAY-TO-SECOND PIC S9(4) BINARY VALUE IS 10.

332 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-HOUR PIC S9(4) BINARY VALUE IS 4.
 01 SQL-HOUR-TO-MINUTE PIC S9(4) BINARY VALUE IS 11.
 01 SQL-HOUR-TO-SECOND PIC S9(4) BINARY VALUE IS 12.
 01 SQL-MINUTE PIC S9(4) BINARY VALUE IS 5.
 01 SQL-MINUTE-TO-SECOND PIC S9(4) BINARY VALUE IS 13.
 01 SQL-MONTH PIC S9(4) BINARY VALUE IS 2.
 01 SQL-SECOND PIC S9(4) BINARY VALUE IS 6.
 01 SQL-YEAR PIC S9(4) BINARY VALUE IS 1.
 01 SQL-YEAR-TO-MONTH PIC S9(4) BINARY VALUE IS 7.
 * CLI OPTION VALUES
 01 SQL-FALSE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-FALSEL PIC S9(9) BINARY VALUE IS 0.
 01 SQL-TRUE PIC S9(4) BINARY VALUE IS 1.
 01 SQL-TRUEL PIC S9(9) BINARY VALUE IS 1.
 01 SQL-NONSCROLLABLE PIC S9(9) BINARY VALUE IS 0.
 01 SQL-SCROLLABLE PIC S9(9) BINARY VALUE IS 1.
 01 SQL-NONHOLDABLE PIC S9(9) BINARY VALUE IS 0.
 01 SQL-HOLDABLE PIC S9(9) BINARY VALUE IS 1.
 01 SQL-INITIALLY-DEFERRED PIC S9(9) BINARY VALUE IS 5.
 01 SQL-INITIALLY-IMMEDIATE PIC S9(9) BINARY VALUE IS 6.
 01 SQL-NOT-DEFERRABLE PIC S9(9) BINARY VALUE IS 7.
 * PARAMETER MODE VALUES
 01 SQL-PARAM-MODE-IN PIC S9(4) BINARY VALUE IS 1.
 01 SQL-PARAM-MODE-OUT PIC S9(4) BINARY VALUE IS 4.
 01 SQL-PARAM-MODE-INOUT PIC S9(4) BINARY VALUE IS 2.
 * CODES USED FOR FETCHORIENTATION
 01 SQL-FETCH-NEXT PIC S9(4) BINARY VALUE IS 1.
 01 SQL-FETCH-FIRST PIC S9(4) BINARY VALUE IS 2.
 01 SQL-FETCH-LAST PIC S9(4) BINARY VALUE IS 3.
 01 SQL-FETCH-PRIOR PIC S9(4) BINARY VALUE IS 4.
 01 SQL-FETCH-ABSOLUTE PIC S9(4) BINARY VALUE IS 5.
 01 SQL-FETCH-RELATIVE PIC S9(4) BINARY VALUE IS 6.
 * VALUES OF NULLABLE FIELD IN DESCRIPTOR
 01 SQL-NO-NULLS PIC S9(4) BINARY VALUE IS 0.
 01 SQL-NULLABLE PIC S9(4) BINARY VALUE IS 1.
 * VALUES RETURNED BY SQLRGETTYPEINFO FOR THE SEARCHABLE COLUMN
 01 SQL-PRED-NONE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-PRED-CHAR PIC S9(4) BINARY VALUE IS 1.
 01 SQL-PRED-BASIC PIC S9(4) BINARY VALUE IS 2.
 * VALUES OF UNNAMED FIELD IN DESCRIPTOR
 01 SQL-NAMED PIC S9(4) BINARY VALUE IS 0.
 01 SQL-UNNAMED PIC S9(4) BINARY VALUE IS 1.
 * VALUES OF ALLOC-TYPE FIELD IN DESCRIPTOR
 01 SQL-DESC-ALLOC-AUTO PIC S9(4) BINARY VALUE IS 1.
 01 SQL-DESC-ALLOC-USER PIC S9(4) BINARY VALUE IS 2.
 * SQLRENDTRAN OPTIONS
 01 SQL-COMMIT PIC S9(4) BINARY VALUE IS 0.
 01 SQL-ROLLBACK PIC S9(4) BINARY VALUE IS 1.
 01 SQL-SAVEPOINT-NAME-ROLLBACK PIC S9(4) BINARY VALUE IS 2.
 01 SQL-SAVEPOINT-NAME-RELEASE PIC S9(4) BINARY VALUE IS 4.
 01 SQL-COMMIT-AND-CHAIN PIC S9(4) BINARY VALUE IS 6.
 01 SQL-ROLLBACK-AND-CHAIN PIC S9(4) BINARY VALUE IS 7.
 * SQLRFREESTMT OPTIONS
 01 SQL-CLOSE-CURSOR PIC S9(4) BINARY VALUE IS 0.
 01 SQL-FREE-HANDLE PIC S9(4) BINARY VALUE IS 1.
 01 SQL-UNBIND-COLUMNS PIC S9(4) BINARY VALUE IS 2.
 01 SQL-UNBIND-PARAMETERS PIC S9(4) BINARY VALUE IS 3.

Typical header files 333

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-REALLOCATE PIC S9(4) BINARY VALUE IS 4.
 * PROVIDED FOR BACKWARDS COMPABILITY
 01 SQL-CLOSE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-DROP PIC S9(4) BINARY VALUE IS 1.
 01 SQL-UNBIND PIC S9(4) BINARY VALUE IS 2.
 01 SQL-RESET-PARAMS PIC S9(4) BINARY VALUE IS 3.
 * NULL HANDLE USED WHEN ALLOCATING HENV
 01 SQL-NULL-HANDLE PIC S9(9) BINARY VALUE IS 0.
 * NULL HANDLES RETURNED BY SQLRALLOCHANDLE
 01 SQL-NULL-HENV PIC S9(9) BINARY VALUE IS 0.
 01 SQL-NULL-HDBC PIC S9(9) BINARY VALUE IS 0.
 01 SQL-NULL-HSTMT PIC S9(9) BINARY VALUE IS 0.
 01 SQL-NULL-HDESC PIC S9(9) BINARY VALUE IS 0.
 * SQLRGETFUNCTIONS VALUES TO IDENTIFY CLI ROUTINES
 01 SQL-API-SQLALLOCCONNECT PIC S9(4) BINARY VALUE IS 1.
 01 SQL-API-SQLALLOCENV PIC S9(4) BINARY VALUE IS 2.
 01 SQL-API-SQLALLOCHANDLE PIC S9(4) BINARY VALUE IS 1001.
 01 SQL-API-SQLALLOCSTMT PIC S9(4) BINARY VALUE IS 3.
 01 SQL-API-SQLBINDCOL PIC S9(4) BINARY VALUE IS 4.
 01 SQL-API-SQLBINDPARAMETER PIC S9(4) BINARY VALUE IS 72.
 01 SQL-API-SQLCANCEL PIC S9(4) BINARY VALUE IS 5.
 01 SQL-API-SQLCLOSECURSOR PIC S9(4) BINARY VALUE IS 1003.
 01 SQL-API-SQLCOLATTRIBUTE PIC S9(4) BINARY VALUE IS 6.
 01 SQL-API-SQLCOLUMNPRIVILEGES PIC S9(4) BINARY VALUE IS 56.
 01 SQL-API-SQLCOLUMNS PIC S9(4) BINARY VALUE IS 40.
 01 SQL-API-SQLCONNECT PIC S9(4) BINARY VALUE IS 7.
 01 SQL-API-SQLCOPYDESC PIC S9(4) BINARY VALUE IS 1004.
 01 SQL-API-SQLDATASOURCES PIC S9(4) BINARY VALUE IS 57.
 01 SQL-API-SQLDESCRIBECOL PIC S9(4) BINARY VALUE IS 8.
 01 SQL-API-SQLDISCONNECT PIC S9(4) BINARY VALUE IS 9.
 01 SQL-API-SQLENDTRAN PIC S9(4) BINARY VALUE IS 1005.
 01 SQL-API-SQLERROR PIC S9(4) BINARY VALUE IS 10.
 01 SQL-API-SQLEXECDIRECT PIC S9(4) BINARY VALUE IS 11.
 01 SQL-API-SQLEXECUTE PIC S9(4) BINARY VALUE IS 12.
 01 SQL-API-SQLFETCH PIC S9(4) BINARY VALUE IS 13.
 01 SQL-API-SQLFETCHSCROLL PIC S9(4) BINARY VALUE IS 1021.
 01 SQL-API-SQLFOREIGNKEYS PIC S9(4) BINARY VALUE IS 60.
 01 SQL-API-SQLFREECONNECT PIC S9(4) BINARY VALUE IS 14.
 01 SQL-API-SQLFREEENV PIC S9(4) BINARY VALUE IS 15.
 01 SQL-API-SQLFREEHANDLE PIC S9(4) BINARY VALUE IS 1006.
 01 SQL-API-SQLFREESTMT PIC S9(4) BINARY VALUE IS 16.
 01 SQL-API-SQLGETCONNECTATTR PIC S9(4) BINARY VALUE IS 1007.
 01 SQL-API-SQLGETCURSORNAME PIC S9(4) BINARY VALUE IS 17.
 01 SQL-API-SQLGETDATA PIC S9(4) BINARY VALUE IS 43.
 01 SQL-API-SQLGETDESCFIELD PIC S9(4) BINARY VALUE IS 1008.
 01 SQL-API-SQLGETDESCREC PIC S9(4) BINARY VALUE IS 1009.
 01 SQL-API-SQLGETDIAGFIELD PIC S9(4) BINARY VALUE IS 1010.
 01 SQL-API-SQLGETDIAGREC PIC S9(4) BINARY VALUE IS 1011.
 01 SQL-API-SQLGETENVATTR PIC S9(4) BINARY VALUE IS 1012.
 01 SQL-API-SQLGETFEATUREINFO PIC S9(4) BINARY VALUE IS 1027.
 01 SQL-API-SQLGETFUNCTIONS PIC S9(4) BINARY VALUE IS 44.
 01 SQL-API-SQLGETINFO PIC S9(4) BINARY VALUE IS 45.
 01 SQL-API-SQLGETLENGTH PIC S9(4) BINARY VALUE IS 1022.
 01 SQL-API-SQLGETPARAMDATA PIC S9(4) BINARY VALUE IS 1025.
 01 SQL-API-SQLGETPOSITION PIC S9(4) BINARY VALUE IS 1023.
 01 SQL-API-SQLGETSESSIONINFO PIC S9(4) BINARY VALUE IS 1028.
 01 SQL-API-SQLGETSTMTATTR PIC S9(4) BINARY VALUE IS 1014.

334 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-API-SQLGETSUBSTRING PIC S9(4) BINARY VALUE IS 1024.
 01 SQL-API-SQLGETTYPEINFO PIC S9(4) BINARY VALUE IS 47.
 01 SQL-API-SQLMORERESULTS PIC S9(4) BINARY VALUE IS 61.
 01 SQL-API-SQLNEXTRESULT PIC S9(4) BINARY VALUE IS 73.
 01 SQL-API-SQLNUMRESULTCOLS PIC S9(4) BINARY VALUE IS 18.
 01 SQL-API-SQLPARAMDATA PIC S9(4) BINARY VALUE IS 48.
 01 SQL-API-SQLPREPARE PIC S9(4) BINARY VALUE IS 19.
 01 SQL-API-SQLPRIMARYKEYS PIC S9(4) BINARY VALUE IS 65.
 01 SQL-API-SQLPUTDATA PIC S9(4) BINARY VALUE IS 49.
 01 SQL-API-SQLROWCOUNT PIC S9(4) BINARY VALUE IS 20.
 01 SQL-API-SQLSETCONNECTATTR PIC S9(4) BINARY VALUE IS 1016.
 01 SQL-API-SQLSETCURSORNAME PIC S9(4) BINARY VALUE IS 21.
 01 SQL-API-SQLSETDESCFIELD PIC S9(4) BINARY VALUE IS 1017.
 01 SQL-API-SQLSETDESCREC PIC S9(4) BINARY VALUE IS 1018.
 01 SQL-API-SQLSETENVATTR PIC S9(4) BINARY VALUE IS 1019.
 01 SQL-API-SQLSETSTMTATTR PIC S9(4) BINARY VALUE IS 1020.
 01 SQL-API-SQLSPECIALCOLUMNS PIC S9(4) BINARY VALUE IS 52.
 01 SQL-API-SQLSTARTTRAN PIC S9(4) BINARY VALUE IS 74.
 01 SQL-API-SQLTABLES PIC S9(4) BINARY VALUE IS 54.
 01 SQL-API-SQLTABLEPRIVILEGES PIC S9(4) BINARY VALUE IS 70.
 * INFORMATION REQUESTED BY SQLRGETINFO
 01 SQL-MAXIMUM-DRIVER-CONNECTIONS PIC S9(4) BINARY VALUE IS 0.
 01 SQL-MAXIMUM-CONCURRENT-ACTIVITIES PIC S9(4) BINARY VALUE IS 1.
 01 SQL-DATA-SOURCE-NAME PIC S9(4) BINARY VALUE IS 2.
 01 SQL-FETCH-DIRECTION PIC S9(4) BINARY VALUE IS 8.
 01 SQL-SERVER-NAME PIC S9(4) BINARY VALUE IS 13.
 01 SQL-SEARCH-PATTERN-ESCAPE PIC S9(4) BINARY VALUE IS 14.
 01 SQL-DBMS-NAME PIC S9(4) BINARY VALUE IS 17.
 01 SQL-DBMS-VERSION PIC S9(4) BINARY VALUE IS 18.
 01 SQL-CURSOR-COMMIT-BEHAVIOR PIC S9(4) BINARY VALUE IS 23.
 01 SQL-DATA-SOURCE-READ-ONLY PIC S9(4) BINARY VALUE IS 25.
 01 SQL-DEFAULT-TRANSACTION-ISOLATION PIC S9(4) BINARY VALUE IS 26.
 01 SQL-IDENTIFIER-CASE PIC S9(4) BINARY VALUE IS 28.
 01 SQL-MAXIMUM-COLUMN-NAME-LENGTH PIC S9(4) BINARY VALUE IS 30.
 01 SQL-MAXIMUM-CURSOR-NAME-LENGTH PIC S9(4) BINARY VALUE IS 31.
 01 SQL-MAXIMUM-SCHEMA-NAME-LENGTH PIC S9(4) BINARY VALUE IS 32.
 01 SQL-MAXIMUM-CATALOG-NAME-LENGTH PIC S9(4) BINARY VALUE IS 34.
 01 SQL-MAXIMUM-TABLE-NAME-LENGTH PIC S9(4) BINARY VALUE IS 35.
 01 SQL-SCROLL-CONCURRENCY PIC S9(4) BINARY VALUE IS 43.
 01 SQL-TRANSACTION-CAPABLE PIC S9(4) BINARY VALUE IS 46.
 01 SQL-USER-NAME PIC S9(4) BINARY VALUE IS 47.
 01 SQL-TRANSACTION-ISOLATION-OPTION PIC S9(4) BINARY VALUE IS 72.
 01 SQL-INTEGRITY PIC S9(4) BINARY VALUE IS 73.
 01 SQL-GETDATA-EXTENSIONS PIC S9(4) BINARY VALUE IS 81.
 01 SQL-NULL-COLLATION PIC S9(4) BINARY VALUE IS 85.
 01 SQL-ALTER-TABLE PIC S9(4) BINARY VALUE IS 86.
 01 SQL-ORDER-BY-COLUMNS-IN-SELECT PIC S9(4) BINARY VALUE IS 90.
 01 SQL-SPECIAL-CHARACTERS PIC S9(4) BINARY VALUE IS 94.
 01 SQL-MAXIMUM-COLUMNS-IN-GROUP-BY PIC S9(4) BINARY VALUE IS 97.
 01 SQL-MAXIMUM-COLUMNS-IN-ORDER-BY PIC S9(4) BINARY VALUE IS 99.
 01 SQL-MAXIMUM-COLUMNS-IN-SELECT PIC S9(4) BINARY VALUE IS 100.
 01 SQL-MAXIMUM-COLUMNS-IN-TABLE PIC S9(4) BINARY VALUE IS 101.
 01 SQL-MAXIMUM-STMT-OCTETS PIC S9(4) BINARY VALUE IS 20000.
 01 SQL-MAXIMUM-STMT-OCTETS-DATA PIC S9(4) BINARY VALUE IS 20001.
 01 SQL-MAXIMUM-STMT-OCTETS-SCHEMA PIC S9(4) BINARY VALUE IS 20002.
 01 SQL-MAXIMUM-TABLES-IN-SELECT PIC S9(4) BINARY VALUE IS 106.
 01 SQL-MAXIMUM-USER-NAME-LENGTH PIC S9(4) BINARY VALUE IS 107.

Typical header files 335

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 01 SQL-OUTER-JOIN-CAPABILITIES PIC S9(4) BINARY VALUE IS 115.
 01 SQL-CURSOR-SENSITIVITY PIC S9(4) BINARY VALUE IS 10001.
 01 SQL-DESCRIBE-PARAMETER PIC S9(4) BINARY VALUE IS 10002.
 01 SQL-CATALOG-NAME PIC S9(4) BINARY VALUE IS 10003.
 01 SQL-COLLATING-SEQUENCE PIC S9(4) BINARY VALUE IS 10004.
 01 SQL-MAXIMUM-IDENTIFIER-LENGTH PIC S9(4) BINARY VALUE IS 10005.
 * INFORMATION REQUESTED BY SQLRGETSESSIONINFO
 01 SQL-CURRENT-USER PIC S9(4) BINARY VALUE IS 47.
 01 SQL-CURRENT-DEFAULT-TRANSFORM-GROUP PIC S9(4) BINARY VALUE IS 20004.
 01 SQL-CURRENT-PATH PIC S9(4) BINARY VALUE IS 20005.
 01 SQL-CURRENT-ROLE PIC S9(4) BINARY VALUE IS 20006.
 01 SQL-SESSION-USER PIC S9(4) BINARY VALUE IS 20007.
 01 SQL-SYSTEM-USER PIC S9(4) BINARY VALUE IS 20008.
 01 SQL-CURRENT-CATALOG PIC S9(4) BINARY VALUE IS 20009.
 01 SQL-CURRENT-SCHEMA PIC S9(4) BINARY VALUE IS 20010.
 * STATEMENT ATTRIBUTE VALUES FOR CURSOR SENSITIVITY
 01 SQL-ASENSITIVE PIC S9(9) BINARY VALUE IS 0.
 01 SQL-INSENSITIVE PIC S9(9) BINARY VALUE IS 1.
 01 SQL-SENSITIVE PIC S9(9) BINARY VALUE IS 2.
 * DEFINE SQL-UNSPECIFIED FOR BACKWARDS COMPATIBILITY
 01 SQL-UNSPECIFIED PIC S9(9) BINARY VALUE IS 0.
 * SQL-ALTER-TABLE VALUES
 01 SQL-AT-ADD-COLUMN PIC S9(9) BINARY VALUE IS 1.
 01 SQL-AT-DROP-COLUMN PIC S9(9) BINARY VALUE IS 2.
 01 SQL-AT-ALTER-COLUMN PIC S9(9) BINARY VALUE IS 4.
 01 SQL-AT-ADD-CONSTRAINT PIC S9(9) BINARY VALUE IS 8.
 01 SQL-AT-DROP-CONSTRAINT PIC S9(9) BINARY VALUE IS 16.
 * SQL-CURSOR-COMMIT-BEHAVIOR VALUES
 01 SQL-CB-DELETE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-CB-CLOSE PIC S9(4) BINARY VALUE IS 1.
 01 SQL-CB-PRESERVE PIC S9(4) BINARY VALUE IS 2.
 * SQL-FETCH-DIRECTION VALUES
 01 SQL-FD-FETCH-NEXT PIC S9(9) BINARY VALUE IS 1.
 01 SQL-FD-FETCH-FIRST PIC S9(9) BINARY VALUE IS 2.
 01 SQL-FD-FETCH-LAST PIC S9(9) BINARY VALUE IS 4.
 01 SQL-FD-FETCH-PRIOR PIC S9(9) BINARY VALUE IS 8.
 01 SQL-FD-FETCH-ABSOLUTE PIC S9(9) BINARY VALUE IS 16.
 01 SQL-FD-FETCH-RELATIVE PIC S9(9) BINARY VALUE IS 32.
 * SQL-GETDATA-EXTENSIONS VALUES
 01 SQL-GD-ANY-COLUMNS PIC S9(9) BINARY VALUE IS 1.
 01 SQL-GD-ANY-ORDER PIC S9(9) BINARY VALUE IS 2.
 * SQL-IDENTIFIER-CASE VALUES
 01 SQL-IC-UPPER PIC S9(4) BINARY VALUE IS 1.
 01 SQL-IC-LOWER PIC S9(4) BINARY VALUE IS 2.
 01 SQL-IC-SENSITIVE PIC S9(4) BINARY VALUE IS 3.
 01 SQL-IC-MIXED PIC S9(4) BINARY VALUE IS 4.
 * SQL-NULL-COLLATION VALUES
 01 SQL-NC-HIGH PIC S9(4) BINARY VALUE IS 1.
 01 SQL-NC-LOW PIC S9(4) BINARY VALUE IS 2.
 * SQL-OUTER-JOIN-CAPABILITIES VALUES
 01 SQL-OUTER-JOIN-LEFT PIC S9(9) BINARY VALUE IS 1.
 01 SQL-OUTER-JOIN-RIGHT PIC S9(9) BINARY VALUE IS 2.
 01 SQL-OUTER-JOIN-FULL PIC S9(9) BINARY VALUE IS 4.
 01 SQL-OUTER-JOIN-NESTED PIC S9(9) BINARY VALUE IS 8.
 01 SQL-OUTER-JOIN-NOT-ORDERED PIC S9(9) BINARY VALUE IS 16.
 01 SQL-OUTER-JOIN-INNER PIC S9(9) BINARY VALUE IS 32.
 01 SQL-OUTER-JOIN-ALL-COMPARISON-OPS PIC S9(9) BINARY VALUE IS 64.

336 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

 * SQL-SCROLL-CONCURRENCY VALUES
 01 SQL-SCCO-READ-ONLY PIC S9(9) BINARY VALUE IS 1.
 01 SQL-SCCO-LOCK PIC S9(9) BINARY VALUE IS 2.
 01 SQL-SCCO-OPT-ROWVER PIC S9(9) BINARY VALUE IS 4.
 01 SQL-SCCO-OPT-VALUES PIC S9(9) BINARY VALUE IS 8.
 * SQL-TRANSACTION-CAPABLE VALUES
 01 SQL-TC-NONE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-TC-DML PIC S9(4) BINARY VALUE IS 1.
 01 SQL-TC-ALL PIC S9(4) BINARY VALUE IS 2.
 01 SQL-TC-ALL-COMMIT PIC S9(4) BINARY VALUE IS 3.
 01 SQL-TC-DDL-IGNORE PIC S9(4) BINARY VALUE IS 4.
 * SQL-TRANSACTION-ISOLATION VALUES
 01 SQL-TRANSACTION-READ-UNCOMMITTED PIC S9(9) BINARY VALUE IS 1.
 01 SQL-TRANSACTION-READ-COMMITTED PIC S9(9) BINARY VALUE IS 2.
 01 SQL-TRANSACTION-REPEATABLE-READ PIC S9(9) BINARY VALUE IS 4.
 01 SQL-TRANSACTION-SERIALIZABLE PIC S9(9) BINARY VALUE IS 8.
 * SQL-TRANSACTION-ACCESS-MODE VALUES
 01 SQL-TRANSACTION-READ-ONLY PIC S9(9) BINARY VALUE IS 1.
 01 SQL-TRANSACTION-READ-WRITE PIC S9(9) BINARY VALUE IS 2.
 * COLUMN TYPES AND SCOPES IN SPECIALCOLUMNS
 01 SQL-BEST-ROWID PIC S9(4) BINARY VALUE IS 1.
 01 SQL-SCOPE-CURRROW PIC S9(4) BINARY VALUE IS 0.
 01 SQL-SCOPE-TRANSACTION PIC S9(4) BINARY VALUE IS 1.
 01 SQL-SCOPE-SESSION PIC S9(4) BINARY VALUE IS 2.
 01 SQL-PC-UNKNOWN PIC S9(4) BINARY VALUE IS 0.
 01 SQL-PC-NOT-PSEUDO PIC S9(4) BINARY VALUE IS 1.
 01 SQL-PC-PSEUDO PIC S9(4) BINARY VALUE IS 2.
 * FOREIGN KEY UPDATE AND DELETE RULES
 01 SQL-CASCADE PIC S9(4) BINARY VALUE IS 0.
 01 SQL-RESTRICT PIC S9(4) BINARY VALUE IS 1.
 01 SQL-SET-NULL PIC S9(4) BINARY VALUE IS 2.
 01 SQL-NO-ACTION PIC S9(4) BINARY VALUE IS 3.
 01 SQL-SET-DEFAULT PIC S9(4) BINARY VALUE IS 4.
 * SPECIAL PARAMETER VALUES
 01 SQL-ALL-CATALOGS PIC X VALUE IS '%'.
 01 SQL-ALL-SCHEMAS PIC X VALUE IS '%'.
 01 SQL-ALL-TABLE-TYPES PIC X VALUE IS '%'.

Typical header files 337

CD 9075-3:200x(E)
A.2 COBOL library item SQLCLI

(Blank page)

338 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Annex B
(informative)

Sample C programs

This Annex includes three examples of using SQL/CLI.

The first example illustrates creating a table, adding some data to it, and selecting the inserted data. The second
example shows interactive ad hoc query processing. The third example demonstrates how to provide long
dynamic arguments at Execute time.

Actual SQL/CLI applications include more complete error checking following calls to SQL/CLI routines. That
material is omitted from this Annex for the sake of clarity.

B.1 Create table, insert, select

This example function creates a table, inserts data into the table, and selects the inserted data.

This example illustrates the execution of SQL statement text both using the Prepare and Execute method and
using the ExecDirect method. The example also illustrates both the case where the SQL/CLI application uses
the automatically-generated descriptors and the case where the SQL/CLI application allocates a descriptor of
its own and associates this descriptor with the SQL statement.

Code comments include the equivalent statements in embedded SQL to show how embedded SQL operations
correspond to SQL/CLI function calls.

 #include <stddef.h>
 #include <string.h>
 #include <sqlcli.h>
 #define NAMELEN 50
 int print_err(SQLSMALLINT handletype, SQLINTEGER handle);
 int example1(SQLCHAR *server, SQLCHAR *uid, SQLCHAR *authen)
 {
 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHDESC hdesc;
 SQLHDESC hdesc1;
 SQLHDESC hdesc2;
 SQLHSTMT hstmt;
 SQLINTEGER id;
 SQLINTEGER idind;
 SQLCHAR name[NAMELEN+1];
 SQLINTEGER namelen;
 SQLINTEGER nameind;
 /* EXEC SQL CONNECT TO :server USER :uid; */
 /* allocate an environment handle */

Sample C programs 339

CD 9075-3:200x(E)
B.1 Create table, insert, select

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 /* allocate a connection handle */
 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 /* connect to database */
 if (SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS,
 authen, SQL_NTS)
 != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_DBC, hdbc));
 /* allocate a statement handle */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 /* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */
 {
 SQLCHAR create[] ="CREATE TABLE NAMEID (ID integer,"
 " NAME varchar(50))";
 /* execute the CREATE TABLE statement */
 if (SQLExecDirect(hstmt, create, SQL_NTS) != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_STMT, hstmt));
 }
 /* EXEC SQL COMMIT WORK; */
 /* commit CREATE TABLE */
 SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT);
 /* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */
 {
 SQLCHAR insert[]= "INSERT INTO NAMEID VALUES (?, ?)";
 /* show the use of SQLPrepare/SQLExecute method */
 /* prepare the INSERT */
 if (SQLPrepare(hstmt, insert, SQL_NTS) != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_STMT, hstmt));
 /* application parameter descriptor */
 SQLGetStmtAttr(hstmt, SQL_ATTR_APP_PARAM_DESC, &hdesc1, 0L,
 (SQLINTEGER *)NULL);
 SQLSetDescRec(hdesc1, 1, SQL_INTEGER, 0, 0L, 0, 0,
 (SQLPOINTER)&id, (SQLINTEGER *)NULL, (SQLINTEGER *)NULL);
 SQLSetDescRec(hdesc1, 2, SQL_CHAR, 0, NAMELEN, 0, 0,
 (SQLPOINTER)name, (SQLINTEGER *)NULL,
 (SQLINTEGER *)NULL);
 /* implementation parameter descriptor */
 SQLGetStmtAttr(hstmt, SQL_ATTR_IMP_PARAM_DESC, &hdesc2, 0L,
 (SQLINTEGER *)NULL);
 SQLSetDescRec(hdesc2, 1, SQL_INTEGER, 0, 0L, 0, 0,
 (SQLPOINTER)NULL, (SQLINTEGER *)NULL,
 (SQLINTEGER *)NULL);
 SQLSetDescRec(hdesc2, 2, SQL_VARCHAR, 0, NAMELEN, 0, 0,
 (SQLPOINTER)NULL, (SQLINTEGER *)NULL,
 (SQLINTEGER *)NULL);
 /* assign parameter values and execute the INSERT */
 id=500;
 (void)strcpy((char *)name, "Babbage");
 if (SQLExecute(hstmt) != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_STMT, hstmt));
 }
 /* EXEC SQL COMMIT WORK; */
 SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT); /* commit inserts */
 /* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */
 /* EXEC SQL OPEN c1; */
 /* The application doesn't specify "declare c1 cursor for" */
 {

340 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
B.1 Create table, insert, select

 SQLCHAR select[]= "select ID, NAME from NAMEID";
 if (SQLExecDirect(hstmt, select, SQL_NTS) != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_STMT, hstmt));
 }
 /* EXEC SQL FETCH c1 INTO :id, :name; */
 /* this time, explicitly allocate an application row descriptor */
 SQLAllocHandle(SQL_HANDLE_DESC, hdbc, &hdesc);
 SQLSetDescRec(hdesc, 1, SQL_INTEGER, 0, 0L, 0, 0,
 (SQLPOINTER)&id, (SQLINTEGER *)NULL, (SQLINTEGER *)&idind);
 SQLSetDescRec(hdesc, 2, SQL_CHAR, 0, NAMELEN,
 0, 0, (SQLPOINTER)&name, (SQLINTEGER *)&namelen,
 (SQLINTEGER *)&nameind);
 /* associate descriptor with statement handle */
 SQLSetStmtAttr(hstmt, SQL_ATTR_APP_ROW_DESC, &hdesc, 0);
 /* execute the fetch */
 SQLFetch(hstmt);
 /* EXEC SQL CLOSE c1; */
 SQLCloseCursor(hstmt);
 /* EXEC SQL COMMIT WORK; */
 /* commit the transaction */
 SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT);
 /* free the statement handle */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 /* EXEC SQL DISCONNECT; */
 /* disconnect from the database */
 SQLDisconnect(hdbc);
 /* free descriptor handle */
 SQLFreeHandle(SQL_HANDLE_DESC, hdesc);
 /* free descriptor handle */
 SQLFreeHandle(SQL_HANDLE_DESC, hdesc1);
 /* free descriptor handle */
 SQLFreeHandle(SQL_HANDLE_DESC, hdesc2);
 /* free connection handle */
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 /* free environment handle */
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
 return(0);
 }

Sample C programs 341

CD 9075-3:200x(E)
B.1 Create table, insert, select

B.2 Interactive Query

This sample function uses the concise CLI functions to interactively execute an SQL-statement supplied as an
argument. In the case where the user types a SELECT statement, the function fetches and displays all rows of
the result set.

This example illustrates the use of GetDiagField to identify the type of SQL statement executed and, for SQL
statements where the row count is defined on all implementations, the use of GetDiagField to obtain the row
count.

 /*
 * Sample program - uses concise CLI functions to execute
 * interactively an ad hoc statement.
 */
 #include <stddef.h>
 #include <string.h>
 #include <stdlib.h>
 #include <sqlcli.h>
 #define MAXCOLS 100
 #define max(a,b) ((a)>(b)?(a):(b))
 int print_err(SQLSMALLINT handletype, SQLINTEGER handle);
 int build_indicator_message(SQLCHAR *errmsg, SQLPOINTER *data,
 SQLINTEGER collen, SQLINTEGER *outlen, SQLSMALLINT colnum);
 SQLINTEGER display_length(SQLSMALLINT coltype, SQLINTEGER collen,
 SQLCHAR *colname);
 example2(SQLCHAR *server, SQLCHAR *uid, SQLCHAR *authen, SQLCHAR *sqlstr)
 {
 int i;
 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;
 SQLCHAR errmsg[256];
 SQLCHAR colname[32];
 SQLSMALLINT coltype;
 SQLSMALLINT colnamelen;
 SQLSMALLINT nullable;
 SQLINTEGER collen[MAXCOLS];
 SQLSMALLINT scale;
 SQLINTEGER outlen[MAXCOLS];
 SQLCHAR *data[MAXCOLS];
 SQLSMALLINT nresultcols;
 SQLINTEGER rowcount;
 SQLINTEGER stmttype;
 SQLRETURN rc;
 /* allocate an environment handle */
 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 /* allocate a connection handle */
 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 /* connect to database */
 if (SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, authen, SQL_NTS)
 != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_DBC, hdbc));
 /* allocate a statement handle */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 /* execute the SQL statement */

342 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
B.2 Interactive Query

 if (SQLExecDirect(hstmt, sqlstr, SQL_NTS) != SQL_SUCCESS)
 return(print_err(SQL_HANDLE_STMT, hstmt));
 /* see what kind of statement it was */
 SQLGetDiagField(SQL_HANDLE_STMT, hstmt, 0,
 SQL_DIAG_DYNAMIC_FUNCTION_CODE,
 (SQLPOINTER)&stmttype, 0, (SQLSMALLINT *)NULL);
 switch (stmttype) {
 /* SELECT statement */
 case SQL_DIAG_SELECT_CURSOR:
 /* determine number of result columns */
 SQLNumResultCols(hstmt, &nresultcols);
 /* display column names */
 for (i=0; i < nresultcols; i++) {
 SQLDescribeCol(hstmt, i+1, colname, sizeof(colname),
 &colnamelen, &coltype, &collen[i], &scale, &nullable);
 /* assume there is a display_length function which
 computes correct length given the data type */
 collen[i] = display_length(coltype, collen[i], colname);
 (void)printf("%*.*s", (int)collen[i], (int)collen[i],
 (char *)colname);
 /* allocate memory to bind column */
 data[i] = (SQLCHAR *) malloc(collen[i]);
 /* bind columns to program vars, converting all types
 to CHAR */
 SQLBindCol(hstmt, i+1, SQL_CHAR, data[i], collen[i],
 &outlen[i]);
 }
 /* display result rows */
 while ((rc=SQLFetch(hstmt))!=SQL_ERROR) {
 errmsg[0] = '\0';
 if (rc == SQL_SUCCESS_WITH_INFO) {
 for (i=0; i < nresultcols; i++) {
 if (outlen[i] == SQL_NULL_DATA
 || outlen[i] >= collen[i])
 build_indicator_message(errmsg,
 (SQLPOINTER *)&data[i], collen[i],
 &outlen[i], i);
 (void)printf("%*.*s ", (int)outlen[i], (int)outlen[i],
 (char *)data[i]);
 } /* for all columns in this row */
 /* print any truncation messages */
 (void)printf("\n%s", (char *)errmsg);
 }
 } /* while rows to fetch */
 SQLCloseCursor(hstmt);
 break;
 /* searched DELETE, INSERT, MERGE, or searched UPDATE statement */
 case SQL_DIAG_DELETE_WHERE:
 case SQL_DIAG_INSERT:
 case SQL_DIAG_MERGE:
 case SQL_DIAG_UPDATE_WHERE:
 /* check rowcount */
 SQLGetDiagField(SQL_HANDLE_STMT, hstmt, 0,
 SQL_DIAG_ROW_COUNT, (SQLPOINTER)&rowcount, 0,
 (SQLSMALLINT *)NULL);
 if (SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT)
 == SQL_SUCCESS) {

Sample C programs 343

CD 9075-3:200x(E)
B.2 Interactive Query

 (void) printf("Operation successful\n");
 }
 else {
 (void) printf("Operation failed\n");
 }
 (void)printf("%ld rows affected\n", rowcount);
 break;
 /* other statements */
 case SQL_DIAG_ALTER_TABLE:
 case SQL_DIAG_CREATE_TABLE:
 case SQL_DIAG_CREATE_VIEW:
 case SQL_DIAG_DROP_TABLE:
 case SQL_DIAG_DROP_VIEW:
 case SQL_DIAG_DYNAMIC_DELETE_CURSOR:
 case SQL_DIAG_DYNAMIC_UPDATE_CURSOR:
 case SQL_DIAG_GRANT:
 case SQL_DIAG_REVOKE:
 if (SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT)
 == SQL_SUCCESS) {
 (void) printf("Operation successful\n");
 }
 else {
 (void) printf("Operation failed\n");
 }
 break;
 /* implementation-defined statement */
 default:
 (void)printf("Statement type=%ld\n", stmttype);
 break;
 }
 /* free data buffers */
 for (i=0; i < nresultcols; i++) {
 (void)free(data[i]);
 }
 /* free statement handle */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 /* disconnect from database */
 SQLDisconnect(hdbc);
 /* free connection handle */
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 /* free environment handle */
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
 return(0);
 }
 /***
 The following functions are given for completeness, but are
 not relevant for understanding the database processing
 nature of CLI
 ***/
 #define MAX_NUM_PRECISION 15
 /*#define max length of char string representation of no. as:
 = max(precision) + leading sign + E + exp sign + max exp length
 = 15 + 1 + 1 + 1 + 2
 = 15 + 5
 */
 #define MAX_NUM_STRING_SIZE (MAX_NUM_PRECISION + 5)
 SQLINTEGER display_length(SQLSMALLINT coltype, SQLINTEGER collen,

344 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
B.2 Interactive Query

 SQLCHAR *colname)
 {
 switch (coltype) {
 case SQL_CHAR:
 case SQL_VARCHAR:
 case SQL_CLOB:
 case SQL_BINARY:
 case SQL_VARBINARY:
 case SQL_BLOB:
 case SQL_REF:
 return(max(collen,strlen((char *)colname)));
 case SQL_NUMERIC:
 case SQL_DECIMAL:
 case SQL_FLOAT:
 case SQL_REAL:
 case SQL_DOUBLE:
 return(max(MAX_NUM_STRING_SIZE,strlen((char *)colname)));
 case SQL_TYPE_DATE:
 case SQL_TYPE_TIME:
 case SQL_TYPE_TIME_WITH_TIMEZONE:
 case SQL_TYPE_TIMESTAMP:
 case SQL_TYPE_TIMESTAMP_WITH_TIMEZONE:
 case SQL_INTERVAL_YEAR:
 case SQL_INTERVAL_MONTH:
 case SQL_INTERVAL_DAY:
 case SQL_INTERVAL_HOUR:
 case SQL_INTERVAL_MINUTE:
 case SQL_INTERVAL_SECOND:
 case SQL_INTERVAL_YEAR_TO_MONTH:
 case SQL_INTERVAL_DAY_TO_HOUR:
 case SQL_INTERVAL_DAY_TO_MINUTE:
 case SQL_INTERVAL_DAY_TO_SECOND:
 case SQL_INTERVAL_HOUR_TO_MINUTE:
 case SQL_INTERVAL_HOUR_TO_SECOND:
 case SQL_INTERVAL_MINUTE_TO_SECOND:
 return(max(collen,strlen((char *)colname)));
 case SQL_CLOB_LOCATOR:
 case SQL_BLOB_LOCATOR:
 case SQL_INTEGER:
 case SQL_BIGINT:
 case SQL_UDT_LOCATOR:
 case SQL_ARRAY_LOCATOR:
 case SQL_MULTISET_LOCATOR:
 return(max(10,strlen((char *)colname)));
 case SQL_SMALLINT:
 return(max(5,strlen((char *)colname)));
 default:
 (void)printf("Unknown datatype, %d\n", coltype);
 return(0);
 }
 }
 int build_indicator_message(SQLCHAR *errmsg, SQLPOINTER *data,
 SQLINTEGER collen, SQLINTEGER *outlen, SQLSMALLINT colnum)
 {
 if (*outlen == SQL_NULL_DATA) {
 (void)strcpy((char *)data, "NULL");
 *outlen=4;

Sample C programs 345

CD 9075-3:200x(E)
B.2 Interactive Query

 }
 else {
 sprintf((char *)errmsg+strlen((char *)errmsg),
 "%d chars truncated, col %d\n", *outlen-collen+1,
 colnum);
 *outlen=255;
 }
 }

B.3 Providing long dynamic arguments at Execute time

In the following example, an SQL/CLI application prepares an SQL statement to insert data into the EMPLOYEE
table. The statement contains parameters for the NAME, ID, and PHOTO columns. For each parameter, the
SQL/CLI application calls BindParameter to specify the C and SQL data types of the parameter. It also specifies
that the data for the first and third parameters will be passed at execute time, and passes the values 1 (one) and
3 for later retrieval by ParamData. These values will identify which parameter is being processed.

The SQL/CLI application calls GetNextID to get the next available employee ID number. It then calls Execute
to execute the statement. The Execute function returns SQL_NEED_DATA when it needs data for the first and
third parameters. The SQL/CLI application calls ParamData to retrieve the value it stored with BindParameter;
it uses this value to determine which parameter to send data for. For each parameter, the application calls Ini-
tUserData to initialise the data routine. It repeatedly calls GetUserData and PutData to get and send the
parameter data. Finally, it calls ParamData to indicate it has sent all the data for the parameter and to retrieve
the value for the next parameter. After data has been sent for both parameters, ParamData returns SQL_SUC-
CESS.

For the first parameter, InitUserData does not do anything and GetUserData calls a routine to prompt the user
for the employee name. For the third parameter, InitUserData calls a routine to prompt the user for the name
of a file containing a bitmap photo of the employee and opens the file. GetUserData retrieves the next
MAX_DATA_LENGTH octets of photo data from the file. After it has retrieved all the photo data, it closes
the photo file.

Note that some SQL/CLI application routines are omitted for clarity.

 /*
 * Sample program - uses ParamData and PutData to pass long data at
 * execute time.
 */
 #include <stddef.h>
 #include <stdio.h>
 #include <string.h>
 #include <sqlcli.h>
 #define NAME_LENGTH 30
 #define MAX_FILE_NAME_LENGTH 256
 #define MAX_PHOTO_LENGTH 32000
 #define MAX_DATA_LENGTH 1024
 int print_err(SQLSMALLINT handletype, SQLINTEGER handle);
 SQLINTEGER GetNextID();
 void InitUserData(SQLSMALLINT sParam, SQLPOINTER InitValue);
 SQLSMALLINT GetUserData(SQLPOINTER InitValue, SQLSMALLINT sParam,
 SQLCHAR *Data, SQLINTEGER *StrLen_or_Ind);
 example3(SQLCHAR *server, SQLCHAR *uid, SQLCHAR* pwd)

346 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
B.2 Interactive Query

 {
 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;
 SQLRETURN rc;
 SQLINTEGER NameParamLength, IDLength = 0, PhotoParamLength, StrLen_or_Ind;
 SQLINTEGER ID;
 SQLSMALLINT Param1=1, Param3=3;
 SQLPOINTER pToken, InitValue;
 SQLCHAR Data[MAX_DATA_LENGTH];
 /* allocate an environment handle */
 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 /* allocate a connection handle */
 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 /* connect to database */
 rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 return(print_err(SQL_HANDLE_DBC, hdbc));
 /* allocate a statement handle */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 /* prepare the INSERT statement */
 rc = SQLPrepare(hstmt,
 "INSERT INTO EMPLOYEE (NAME, ID, PHOTO) VALUES (?, ?, ?)",
 SQL_NTS);
 if (rc == SQL_SUCCESS) {
 /* Bind the parameters. For parameters 1 and 3, pass the */
 /* parameter number in ParameterValue instead of a buffer address. */
 SQLBindParameter(hstmt, 1, SQL_PARAM_MODE_IN, SQL_CHAR, SQL_CHAR,
 NAME_LENGTH, 0, &Param1, NAME_LENGTH, &NameParamLength);
 SQLBindParameter(hstmt, 2, SQL_PARAM_MODE_IN, SQL_INTEGER, SQL_INTEGER,
 sizeof(ID), 0, &ID, 0 &IDLength);
 SQLBindParameter(hstmt, 3, SQL_PARAM_MODE_IN, SQL_CHAR, SQL_CHAR,
 MAX_PHOTO_LENGTH, 0, &Param3, MAX_PHOTO_LENGTH, &PhotoParamLength);
 /* Set values so data for parameters 1 and 3 will be passed */
 /* at execution. */
 NameParamLength = PhotoParamLength = SQL_DATA_AT_EXEC;
 ID = GetNextID(); /* Get next available employee ID number. */
 rc = SQLExecute(hstmt);
 /* For data-at-execution parameters, call SQLParamData to get the */
 /* parameter number set by SQLBindParameter. Call InitUserData. */
 /* Call GetUserData and SQLPutData repeatedly to get and put all */
 /* data for the parameter. Call SQLParamData to finish processing */
 /* this parameter and start processing the next parameter. */
 while (rc == SQL_NEED_DATA) {
 rc = SQLParamData(hstmt, &pToken);
 if (rc == SQL_NEED_DATA) {
 InitUserData(pToken, InitValue);
 while(GetUserData(InitValue,pToken,Data,&StrLen_or_Ind))
 SQLPutData(hstmt, Data, StrLen_or_Ind);
 }
 }
 /* commit the transaction. */
 SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT);
 /* free the Statement handle */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 /* disconnect from the database */
 SQLDisconnect(hdbc);

Sample C programs 347

CD 9075-3:200x(E)
B.3 Providing long dynamic arguments at Execute time

 /* free the Connection handle */
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 /* free the Environment handle */
 SQLFreeEnv(SQL_HANDLE_ENV, henv);
 return(0);
 }
 /***
 The following functions are given for completeness, but are not
 relevant for understanding the database processing nature of CLI
 ***/
 void InitUserData(SQLSMALLINT sParam, SQLPOINTER InitValue)
 {
 SQLCHAR szPhotoFile[MAX_FILE_NAME_LENGTH];
 switch sParam {
 case 3:
 /* Prompt user for bitmap file containing employee photo. */
 /* OpenPhotoFile opens the file and returns the file handle. */
 PromptPhotoFileName(szPhotoFile);
 OpenPhotoFile(szPhotoFile, (FILE *)InitValue);
 break;
 }
 }
 SQLSMALLINT GetUserData(SQLPOINTER InitValue,
 SQLSMALLINT sParam,
 SQLCHAR *Data,
 SQLINTEGER *StrLen_or_Ind)
 {
 switch sParam {
 case 1:
 /* Prompt user for employee name. */
 PromptEmployeeName(Data);
 *StrLen_or_Ind = SQL_NTS;
 return (1);
 case 3:
 /* GetNextPhotoData returns the next piece of photo data and */
 /* the number of octets of data returned (up to MAX_DATA_LENGTH). */
 Done = GetNextPhotoData((FILE *)InitValue, Data,
 MAX_DATA_LENGTH, StrLen_or_Ind);
 if (Done) {
 ClosePhotoFile((FILE *)InitValue);
 return(1);
 }
 return(0);
 }
 return(0);
 }

348 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
B.3 Providing long dynamic arguments at Execute time

Annex C
(informative)

Implementation-defined elements

This Annex modifies Annex B, “Implementation-defined elements”, in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as implemen-
tation-defined.

1) Subclause 4.3, “Diagnostics areas in SQL/CLI”: If the routine's return code indicates No data found, then
no status record is generated corresponding to SQLSTATE value '02000' but there may be status records
generated corresponding to SQLSTATE value '02nnn', where 'nnn' is an implementation-defined subclass
value.

2) Subclause 4.4.1, “Handles”: The validity of a handle in a compilation unit other than the one in which the
identified resource was allocated is implementation-defined.

3) Subclause 4.4.2, “Null terminated strings”: The null character that terminates C character strings is imple-
mentation-defined.

4) Subclause 5.1, “<CLI routine>”:

a) It is implementation-defined which of the invocation of CF or the invocation of CP is supported.

b) The <implementation-defined CLI generic name> for an implementation-defined CLI function shall
be different from the <CLI generic name> of any other CLI function. The <implementation-defined
CLI generic name> for an implementation-defined CLI procedure shall be different from the <CLI
generic name> of any other CLI procedure.

5) Subclause 5.2, “<CLI routine> invocation”:

a) If the value of any input argument provided by the host program falls outside the set of allowed values
of the data type of the parameter, or if the value of any output argument resulting from the execution
of the <CLI routine> falls outside the set of values supported by the host program for that parameter,
then the effect is implementation-defined.

b) If RN did not execute successfully, then one or more exception conditions may be raised as determined
by implementation-defined rules.

6) Subclause 5.4, “Implicit cursor”:

a) The visibility of significant changes through a sensitive holdable cursor during a subsequent SQL-
transaction is implementation-defined.

b) Whether an implementation is able to disallow significant changes that would not be visible through
a currently open cursor is implementation-defined.

7) Subclause 5.5, “Implicit DESCRIBE USING clause”:

Implementation-defined elements 349

CD 9075-3:200x(E)

The null character that terminates C character strings is implementation-defined.a)

b) If the value of COUNT for IPD is greater than D, then it is implementation-defined whether an
exception condition is raised: dynamic SQL error — using clause does not match dynamic parameter
specifications.

8) Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”:

a) Let NIDAL be the number of item descriptor areas in IPD for which LEVEL is 0 (zero). If NIDAL is
greater than D, then it is implementation-defined whether an exception condition is raised: dynamic
SQL error — using clause does not match dynamic parameter specifications.

b) The null character that terminates C character strings is implementation-defined.

c) There may be an implementation-defined conversion from type SDT to type TDT.

d) There may be an implementation-defined conversion from type SDT to type UDT.

9) Subclause 5.7, “Implicit CALL USING clause”:

a) If the result is a zero-length character string, then it is implementation-defined whether or not an
exception condition is raised: data exception — zero-length character string.

b) The maximum length of a variable-length character string is implementation-defined.

c) There may be an implementation-defined conversion from type SDT to type TDT.

10) Subclause 5.8, “Implicit FETCH USING clause”:

a) If separate fetches for the same bound target are inconsistent in whether a locator is used, then it is
implementation-defined whether an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

b) If the result is a zero-length character string, then it is implementation-defined whether or not an
exception condition is raised: data exception — zero-length character string.

c) The maximum length of a variable-length character string is implementation-defined.

d) There may be an implementation-defined conversion from type SDT to type TDT.

11) Subclause 5.9, “Character string retrieval”: The null character that terminates C character strings is imple-
mentation-defined.

12) Subclause 5.13, “Description of CLI item descriptor areas”:

a) The null character that terminates C character strings is implementation-defined.

b) Let IDA be an item descriptor area in an implementation parameter descriptor. One condition that
allows IDA to be valid is if TYPE indicates an implementation-defined data type.

c) One condition that allows a CLI item descriptor area in a CLI descriptor area that is not an implemen-
tation row descriptor to be consistent is if TYPE indicates an implementation-defined data type.

d) Let IDA be an item descriptor area in an application parameter descriptor. One condition that allows
IDA to be valid is if TYPE indicates an implementation-defined data type.

e) One condition that allows a CLI item descriptor area in an application row descriptor to be valid is if
TYPE indicates an implementation-defined data type.

350 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

13) Subclause 6.3, “AllocHandle”:

a) If HT indicates ENVIRONMENT HANDLE and the resources to manage an SQL-environment cannot
be allocated for implementation-defined reasons, then an implementation-defined exception condition
is raised.

b) If HT indicates CONNECTION HANDLE, STATEMENT HANDLE, or DESCRIPTOR HANDLE
and the resources to manage an SQL-connection, SQL-statement, or CLI descriptor area, respectively,
cannot be allocated for implementation-defined reasons, then OutputHandle is set to zero and an
implementation-defined exception condition is raised.

14) Subclause 6.5, “BindCol”: Restrictions on the differences allowed between ARD and IRD are implementation-
defined, except as specified in the General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and
the General Rules of Subclause 6.30, “GetData”.

15) Subclause 6.6, “BindParameter”: Restrictions on the differences allowed between APD and IPD are
implementation-defined, except as specified in the General Rules of Subclause 5.6, “Implicit EXECUTE
USING and OPEN USING clauses”, Subclause 5.7, “Implicit CALL USING clause”, and the General
Rules of Subclause 6.49, “ParamData”.

16) Subclause 6.9, “ColAttribute”: The maximum length of a variable-length character string is implementation-
defined.

17) Subclause 6.10, “ColumnPrivileges”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then COLUMN_PRIVILEGES_QUERY contains a row for each
row describing a column in SS's Information Schema COLUMN_PRIVILEGES view that meets
implementation-defined authorization criteria.

c) The null character that terminates C character strings is implementation-defined.

18) Subclause 6.11, “Columns”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then COLUMNS_QUERY contains a row for each row describing
a column in SS's Information Schema COLUMNS view that meets implementation-defined authorization
criteria.

c) For each row of COLUMNS_QUERY, the value of TYPE_NAME in COLUMNS_QUERY is an
implementation-defined value that is the character string by which the data type is known at the data
source.

d) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT', 'FLOAT',
'REAL', or 'DOUBLE PRECISION', then the value of COLUMN_SIZE in COLUMNS_QUERY is
implementation-defined.

e) The value of BUFFER_LENGTH in COLUMNS_QUERY is implementation-defined.

f) The value of REMARKS in COLUMNS_QUERY is an implementation-defined description of the column.

Implementation-defined elements 351

CD 9075-3:200x(E)

g) The null character that terminates C character strings is implementation-defined.

19) Subclause 6.12, “Connect”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The length of the Authentication parameter is implementation-defined.

c) The null character that terminates C character strings is implementation-defined.

d) If the value of ServerName is not 'DEFAULT' and the length of that value is zero, then an implemen-
tation-defined <authorization identifier> is provided.

e) If the value of ServerName is not 'DEFAULT' and the length of that value is not zero, then that value
may have implementation-defined restrictions on its value.

f) If length of the value of Authentication is zero, then an implementation-defined <user identifier> is
provided.

g) The method by which a default SQL-server is determined is implementation-defined.

h) The method by which the value of ServerName is used to determine the appropriate SQL-server is
determined is implementation-defined.

i) If UN does not conform to any implementation-defined restrictions on its value, then an exception
condition is raised: invalid authorization specification.

20) Subclause 6.14, “DataSources”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The mechanism used to establish the set of names of SQL-servers to which the SQL/CLI application
might be eligible to connect is implementation-defined.

c) The mechanism used to establish the strings describing the set SQL-servers to which the SQL/CLI
application might be eligible to connect is implementation-defined.

21) Subclause 6.15, “DescribeCol”: The maximum length of a variable-length character string is implementation-
defined.

22) Subclause 6.17, “EndTran”:

a) If any other error preventing commitment of the SQL-transaction has occurred, then any changes to
SQL-data or schemas that were made by the current SQL-transaction are canceled and an exception
condition is raised: transaction rollback with an implementation-defined subclass value.

b) The status of any open cursors in L3 that were opened by the current SQL-transaction before the
establishment of SP is implementation-defined.

23) Subclause 6.18, “Error”: The maximum length of a variable-length character string is implementation-
defined.

24) Subclause 6.19, “ExecDirect”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The null character that terminates C character strings is implementation-defined.

352 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

c) If P is a <preparable dynamic delete statement: positioned> and the execution of P deleted the current
row of CR, then the effect on the fetched row, if any, associated with the allocated SQL-statement
under which that current row was established, is implementation-defined.

d) If P is a <preparable dynamic update statement: positioned> and the execution of P updated the current
row of CR, then the effect on the fetched row, if any, associated with the allocated SQL-statement
under which that current row was established, is implementation-defined.

25) Subclause 6.20, “Execute”:

a) If P is a <preparable dynamic delete statement: positioned> and the execution of P deleted the current
row of CR, then the effect on the fetched row, if any, associated with the allocated SQL-statement
under which that current row was established, is implementation-defined.

b) If P is a <preparable dynamic update statement: positioned> and the execution of P updated the current
row of CR, then the effect on the fetched row, if any, associated with the allocated SQL-statement
under which that current row was established, is implementation-defined.

26) Subclause 6.23, “ForeignKeys”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then FOREIGN_KEYS_QUERY contains a row for each row
describing a column in SS's Information Schema TABLE_CONSTRAINT view that meets implemen-
tation-defined authorization criteria.

c) The null character that terminates C character strings is implementation-defined.

d) If there are no implementation-defined mechanisms for setting the value of DEFERABILITY in
FOREIGN_KEYS_QUERY to the value of the code for INITIALLY DEFERRED or to the value of the
code for INITIALLY IMMEDIATE in Table 27, “Miscellaneous codes used in CLI”, then the value
of DEFERABILITY in FOREIGN_KEYS_QUERY is the code for NOT DEFERRABLE in Table 27,
“Miscellaneous codes used in CLI”; otherwise, the value of DEFERABILITY in FOR-
EIGN_KEYS_QUERY can be the code for INITIALLY DEFERRED, the value of the code for INI-
TIALLY IMMEDIATE, or the code for NOT DEFERRABLE in Table 27, “Miscellaneous codes used
in CLI”.

e) If CHAR_LENGTH(PKN) ≠ 0 (zero) and CHAR_LENGTH(FKN) ≠ 0 (zero), then the result of the
routine is implementation-defined.

27) Subclause 6.28, “GetConnectAttr”: The value of Attribute might specify an implementation-defined con-
nection attribute.

28) Subclause 6.29, “GetCursorName”: The maximum length of a variable-length character string is implemen-
tation-defined.

29) Subclause 6.30, “GetData”:

a) If CN is not greater than HBCN and the DATA_POINTER field of IDA is zero, then it is implementation-
defined whether an exception condition is raised: dynamic SQL error — invalid descriptor index. That
is, it is implementation-defined whether columns with a lower column number than that of the highest
bound column can be accessed by GetData.

Implementation-defined elements 353

CD 9075-3:200x(E)

b) If FCN is greater than zero and CN is not greater than FCN, then it is implementation-defined whether
an exception condition is raised: dynamic SQL error — invalid descriptor index. That is, it is implemen-
tation-defined whether GetData can only access columns in ascending column number order.

c) If FCN is less than zero and CN is less than FCN, then it is implementation-defined whether an
exception condition is raised: dynamic SQL error — invalid descriptor index.

d) The maximum length of a variable-length character string is implementation-defined.

e) If separate retrievals for the same <target specification> are inconsistent in whether a locator is used,
then it is implementation-defined whether an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

f) If a zero-length character string is fetched, then it is implementation-defined whether or not an exception
condition is raised: data exception — zero-length character string.

g) There may be an implementation-defined conversion from type SDT to type TDT.

30) Subclause 6.31, “GetDescField”:

a) If TYPE is 'HEADER', then header information from the descriptor area D is retrieved; if FI indicates
an implementation-defined descriptor header field, then the value retrieved is the value of the imple-
mentation-defined descriptor header field identified by FI.

b) If TYPE is 'ITEM', then item information from the descriptor area D is retrieved; if FI indicates an
implementation-defined descriptor item field, then the value retrieved is the value of the implementation-
defined descriptor item field of IDA identified by FI.

31) Subclause 6.32, “GetDescRec”: The maximum length of a variable-length character string is implementation-
defined.

32) Subclause 6.33, “GetDiagField”:

a) If TYPE is 'HEADER' and DI indicates an implementation-defined diagnostics header field, then the
value retrieved is the value of the implementation-defined diagnostics header field.

b) If TYPE is 'STATUS' and DI indicates an implementation-defined diagnostics header field, then the
value retrieved is the value of the implementation-defined diagnostics header field.

c) If TYPE is 'STATUS' and DI indicates NATIVE_CODE, then the value retrieved is the implementation-
defined native error code corresponding to the status condition.

d) If TYPE is 'STATUS', DI indicates MESSAGE_TEXT, and the value of SQLSTATE does not correspond
to external routine invocation exception, external routine exception, or warning, then the value retrieved
is an implementation-defined character string.

e) If TYPE is 'STATUS' and DI indicates CLASS_ORIGIN, then the value retrieved shall be an imple-
mentation-defined character string other than 'ISO 9075' for any implementation-defined class value.

f) If TYPE is 'STATUS' and DI indicates SUBCLASS_ORIGIN, then the value retrieved shall be an
implementation-defined character string other than 'ISO 9075' for any implementation-defined subclass
value.

g) If TYPE is 'STATUS', and DI indicates SERVER_NAME or CONNECTION_NAME, and R is Connect,
then the values retrieved are the name of the SQL-server explicitly or implicitly referenced by R and
the implementation-defined connection name associated with that SQL-server reference, respectively.

354 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

h) If TYPE is 'STATUS', and DI indicates SERVER_NAME or CONNECTION_NAME, and R is Discon-
nect, then the values retrieved are the name of the SQL-server and the associated implementation-
defined connection name, respectively, associated with the allocated SQL-connection referenced by
R.

i) If TYPE is 'STATUS', and DI indicates SERVER_NAME or CONNECTION_NAME, and the status
condition was caused by the SQL/CLI application of the General Rules of Subclause 5.3, “Implicit set
connection”, then the values retrieved are the name of the SQL-server and the implementation-defined
connection name, respectively, associated with the dormant SQL-connection specified in the application
of that Subclause.

j) If TYPE is 'STATUS', and DI indicates SERVER_NAME or CONNECTION_NAME, and the status
condition was raised in an SQL-session, then the values retrieved are name of the SQL-server and the
implementation-defined connection name, respectively, associated with the SQL-session in which the
status condition was raised.

k) The null character that terminates C character strings is implementation-defined.

33) Subclause 6.34, “GetDiagRec”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If NativeError is not a null pointer, then NativeError is set to the implementation-defined native error
code corresponding to the status condition.

c) If MessageText is not a null pointer and either null termination is True for the current SQL-environment
or BL is not zero, then an implementation-defined character string is retrieved.

d) The null character that terminates C character strings is implementation-defined.

34) Subclause 6.35, “GetEnvAttr”: If the value of Attribute specifies an implementation-defined environment
attribute, then Value is set to the value of the implementation-defined environment attribute.

35) Subclause 6.36, “GetFeatureInfo”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The null character that terminates C character strings is implementation-defined.

36) Subclause 6.40, “GetParamData”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an exception
condition is raised: dynamic SQL error — invalid descriptor index.

c) If FPN is greater than zero and PN is not greater than FPN, then it is implementation-defined whether
an exception condition is raised: dynamic SQL error — invalid descriptor index.

d) If PN is less than AFPN, then it is implementation-defined whether an exception condition is raised:
dynamic SQL error — invalid descriptor index.

e) If a specified <cast specification> does not conform to the Syntax Rules of Subclause 6.12, “<cast
specification>”, in ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT
to type TDT, then that implementation-defined conversion is effectively performed, converting SV to
type TDT, and the result is the value TV of the PN-th <target specification>.

Implementation-defined elements 355

CD 9075-3:200x(E)

f) If TV is a zero-length character string, then it is implementation-defined whether or not an exception
condition is raised: data exception — zero-length character string.

g) There may be an implementation-defined conversion from type SDT to type TDT.

37) Subclause 6.43, “GetStmtAttr”: If the value of Attribute specifies an implementation-defined statement
attribute, then Value is set to the value of the implementation-defined statement attribute.

38) Subclause 6.44, “GetSubString”: If the result is a zero-length character string, then it is implementation-
defined whether or not an exception condition is raised: data exception — zero-length character string.

39) Subclause 6.45, “GetTypeInfo”:

a) For all supported data types for which more than one name is supported, it is implementation-defined
whether TYPE_INFO contains a single row or a row for each supported name.

b) If multiple names are supported for this data type and TYPE_INFO contains only a single row for this
data type, then it is implementation-defined which of the names is in TYPE_NAME.

c) The value of COLUMN_SIZE is an implementation-defined value for an implementation-defined data
type that has a length or a precision.

d) The value of CREATE_PARAMS is a comma-separated list of specifiable attributes for the data type;
the appearance of attributes in implementation-defined data types is implementation-defined.

e) The value of CASE_SENSITIVE is 1 (one) if the data type is a character string type and the default
collation for its implementation-defined implicit character set would result in a case sensitive compar-
ison when two values with this data type are compared.

f) The value of LOCAL_TYPE_NAME is an implementation-defined localized representation of the
name of the data type.

40) Subclause 6.46, “MoreResults”: If there is no cursor associated with S and there exists an implementation-
defined capability to support that situation, then implementation-defined rules are evaluated and no further
General Rules of this Subclause are evaluated.

41) Subclause 6.49, “ParamData”:

a) If DPN is equal to HPN, and there is not a select source associated with S, and SS is either a <preparable
dynamic delete statement: positioned> or a <preparable dynamic update statement: positioned>, and
the execution of SS deleted or updated, respectively, the current row of CR, then the effect on the
fetched row, if any, associated with the allocated SQL-statement under which that current row was
established, is implementation-defined.

b) If the result is a zero-length character string, then it is implementation-defined whether or not an
exception condition is raised: data exception — zero-length character string.

c) If a specified <cast specification> does not conform to the Syntax Rules of Subclause 6.12, “<cast
specification>”, in ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT
to type TDT, then that implementation-defined conversion is effectively performed, converting SV to
type TDT, and the result is the value TV of the i-th bound target.

d) The visibility of significant changes through a sensitive holdable cursor during a subsequent SQL-
transaction is implementation-defined.

e) Whether an implementation is able to disallow significant changes that would not be visible through
a currently open cursor is implementation-defined.

356 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

f) The maximum length of a fixed-length character string is implementation-defined.

g) The maximum length of a large object character string is implementation-defined.

h) The maximum length of a fixed-length binary string is implementation-defined.

i) The maximum length of a variable-length binary string is implementation-defined.

j) The maximum length of a binary large object is implementation-defined.

k) There may be an implementation-defined conversion from type SDT to type TDT.

l) There may be an implementation-defined conversion from type SDT to type UDT.

42) Subclause 6.50, “Prepare”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The null character that terminates C character strings is implementation-defined.

43) Subclause 6.51, “PrimaryKeys”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then PRIMARY_KEYS_QUERY contains a row for each row
describing a column in SS's Information Schema TABLE_CONSTRAINT view that meets implemen-
tation-defined authorization criteria.

c) The null character that terminates C character strings is implementation-defined.

44) Subclause 6.52, “PutData”: The null character that terminates C character strings is implementation-defined.

45) Subclause 6.54, “SetConnectAttr”:

a) The null character that terminates C character strings is implementation-defined.

b) If the value of Attribute specifies an implementation-defined connection attribute, then the connection
attribute is set to the value of Value.

46) Subclause 6.55, “SetCursorName”:

a) The maximum length of a variable-length character string is implementation-defined.

b) The null character that terminates C character strings is implementation-defined.

47) Subclause 6.56, “SetDescField”:

a) If FI indicates TYPE and V indicates NUMERIC or DECIMAL, then the SCALE field of IDA is set
to 0 (zero) and the PRECISION field of IDA is set to the implementation-defined default value for the
precision of NUMERIC or DECIMAL data types, respectively.

b) If FI indicates TYPE and V indicates FLOAT, then the PRECISION field of IDA is set to the imple-
mentation-defined default value for the precision of the FLOAT data type.

c) Restrictions on the differences allowed between implementation and application parameter descriptors
are implementation-defined, except as specified in the General Rules of Subclause 5.6, “Implicit
EXECUTE USING and OPEN USING clauses”, the General Rules of Subclause 5.7, “Implicit CALL

Implementation-defined elements 357

CD 9075-3:200x(E)

USING clause”, and in the General Rules of Subclause 6.49, “ParamData”. Restrictions on the differences
between the implementation and application row descriptors are implementation-defined, except as
specified in the General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the General
Rules of Subclause 6.30, “GetData”.

d) The null character that terminates C character strings is implementation-defined.

e) If FI indicates TYPE and V indicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of
IDA is set to 0 (zero) and the PRECISION field of IDA is set to the implementation-defined value for
the precision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

f) If FI indicates TYPE and V indicates REAL or DOUBLE PRECISION, then the PRECISION field of
IDA is set to the implementation-defined value for the precision of the REAL or DOUBLE PRECISION
data types, respectively.

g) If FI indicates TYPE and V indicates an implementation-defined data type, then an implementation-
defined set of fields of IDA are set to implementation-defined default values.

48) Subclause 6.57, “SetDescRec”: Restrictions on the differences allowed between implementation and
application parameter descriptors are implementation-defined, except as specified in the General Rules of
Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”, the General Rules of Subclause 5.7,
“Implicit CALL USING clause”, and in the General Rules of Subclause 6.49, “ParamData”. Restrictions
on the differences between the implementation and application row descriptors are implementation-defined,
except as specified in the General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the
General Rules of Subclause 6.30, “GetData”.

49) Subclause 6.58, “SetEnvAttr”:

a) If the value of Attribute specifies an implementation-defined environment attribute, then the environment
attribute is set to the value of Value.

b) The null character that terminates C character strings is implementation-defined.

50) Subclause 6.59, “SetStmtAttr”:

a) If the value of Attribute specifies an implementation-defined statement attribute, then the statement
attribute is set to the value of Value.

b) The null character that terminates C character strings is implementation-defined.

51) Subclause 6.60, “SpecialColumns”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then SPECIAL_COLUMNS_QUERY contains a row for each
row describing a column in SS's Information Schema SPECIAL_COLUMNS view that meets imple-
mentation-defined authorization criteria.

c) The null character that terminates C character strings is implementation-defined.

d) The value of IdentifierType may be an implementation-defined extension to Table 39, “Column types
and scopes used with SpecialColumns”.

e) The value of SCOPE may be an implementation-defined value.

358 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

f) The value of TYPE_NAME in SPECIAL_COLUMNS_QUERY is an implementation-defined value
that is the character string by which the data type is known at the data source.

g) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT', 'FLOAT',
'REAL', or 'DOUBLE PRECISION', then the value of COLUMN_SIZE in SPE-
CIAL_COLUMNS_QUERY is implementation-defined.

h) The value of BUFFER_LENGTH in SPECIAL_COLUMNS_QUERY is implementation-defined.

52) Subclause 6.61, “StartTran”: The isolation level that is set for a transaction is an implementation-defined
isolation level that will not exhibit any of the phenomena that the explicit or implicit <level of isolation>
would not exhibit, as specified in Table 8, “SQL-transaction isolation levels and the three phenomena”, in
ISO/IEC 9075-2.

53) Subclause 6.62, “TablePrivileges”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then TABLE_PRIVILEGES_QUERY contains a row for each
row describing a column in SS's Information Schema TABLE_PRIVILEGES view that meets imple-
mentation-defined authorization criteria.

c) The null character that terminates C character strings is implementation-defined.

54) Subclause 6.63, “Tables”:

a) The maximum length of a variable-length character string is implementation-defined.

b) If the value of Supported that is returned by the execution of GetFeatureInfo with FeatureType =
'FEATURE' and FeatureId = 'C041' (corresponding to the feature “Information Schema metadata con-
strained by privileges”) is not 1 (one), then TABLES_QUERY contains a row for each row describing
a column in SS's Information Schema TABLES view that meets implementation-defined authorization
criteria.

c) The null character that terminates C character strings is implementation-defined.

d) If the value of TABLE_TYPE in the TABLES view is niether 'VIEW', 'BASE TABLE', nor 'GLOBAL
TEMPORARY', then the value of TABLE_TYPE in TABLES_QUERY is an implementation-defined
value.

e) The value of REMARKS in TABLES_QUERY is an implementation-defined description of the table.

f) Implementation-defined table types may be defined.

55) Subclause 7.1, “SQL_IMPLEMENTATION_INFO base table”: Implementation-defined items that are
represented in this table shall have an IMPLEMENTATION_INFO_ID value that is in the range 11000
through 14999, inclusive.

56) Subclause 7.2, “SQL_SIZING base table”: Implementation-defined items that are represented in this table
shall have a SIZING_ID value that is in the range 15000 through 19999, inclusive.

57) Table 1, “Header fields in SQL/CLI diagnostics areas”:

a) The maximum lengths of CLI diagnostics area fields whose data type is CHARACTER VARYING
are implementation-defined.

Implementation-defined elements 359

CD 9075-3:200x(E)

b) SQL/CLI supports implementation-defined header fields in CLI diagnostics areas.

58) Table 2, “Status record fields in SQL/CLI diagnostics areas”:

a) The maximum lengths of CLI diagnostics area fields whose data type is CHARACTER VARYING
are implementation-defined.

59) Table 4, “Abbreviated SQL/CLI generic names”: SQL/CLI supports implementation-defined CLI routines.

60) Table 6, “Fields in SQL/CLI row and parameter descriptor areas”:

a) The maximum lengths of CLI item descriptor fields whose data type is CHARACTER VARYING are
implementation-defined.

b) SQL/CLI supports implementation-defined header fields and implementation-defined item fields in
row and parameter descriptor areas.

61) Table 7, “Codes used for implementation data types in SQL/CLI”: SQL/CLI supports implementation-
defined implementation data types as specified in this table.

62) Table 8, “Codes used for application data types in SQL/CLI”: SQL/CLI supports implementation-defined
application data types as specified in this table.

63) Table 13, “Codes used for SQL/CLI diagnostic fields”: SQL/CLI supports implementation-defined diag-
nostics header fields and implementation-defined diagnostics status fields.

64) Table 14, “Codes used for SQL/CLI handle types”: SQL/CLI supports implementation-defined handle
types.

65) Table 15, “Codes used for transaction termination”: SQL/CLI supports implementation-defined transaction
termination types.

66) Table 16, “Codes used for environment attributes”: SQL/CLI supports implementation-defined environment
attributes.

67) Table 17, “Codes used for connection attributes”: SQL/CLI supports implementation-defined connection
attributes.

68) Table 18, “Codes used for statement attributes”: SQL/CLI supports implementation-defined statement
attributes.

69) Table 22, “Ability to set SQL/CLI descriptor fields”:

a) “ID” means that it is implementation-defined whether or not the descriptor field is settable.

b) SQL/CLI supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

70) Table 23, “Ability to retrieve SQL/CLI descriptor fields”:

a) “ID” means that it is implementation-defined whether or not the descriptor field is retrievable.

b) SQL/CLI supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

71) Table 24, “SQL/CLI descriptor field default values”:

a) “ID” means that the descriptor field's default value is implementation-defined.

360 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

b) SQL/CLI supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

72) Table 28, “Codes used to identify SQL/CLI routines”: SQL/CLI supports implementation-defined CLI
routines.

73) Table 29, “Codes and data types for implementation information”:

a) SQL/CLI supports implementation-defined information types with implementation-defined codes and
implementation-defined data types as specified in this table.

b) The maximum length of a variable-length character string is implementation-defined.

74) Table 30, “Codes and data types for session implementation information”: The maximum lengths of the
session implementation information items are the implementation-defined maximum lengths of the corre-
sponding <general value specification>s.

75) Table 33, “Codes used for concise data types”: SQL/CLI supports implementation-defined data types as
specified in this table.

76) Table 42, “SQL/CLI data type correspondences for COBOL”:

a) The number of '9's in a PICTURE clause describing CHARACTER LARGE OBJECT LOCATOR,
BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, USER-DEFINED TYPE
LOCATOR, ARRAY LOCATOR, and MULTISET LOCATOR data types in the COBOL host language
is implementation-defined.

77) Table 46, “SQL/CLI data type correspondences for PL/I”:

a) The number of '9's in a FIXED BINARY clause describing CHARACTER LARGE OBJECT LOCA-
TOR, BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, USER-DEFINED
TYPE LOCATOR, ARRAY LOCATOR, and MULTISET LOCATOR data types in the PL/I host
language is implementation-defined.

Implementation-defined elements 361

CD 9075-3:200x(E)

(Blank page)

362 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Annex D
(informative)

Implementation-dependent elements

This Annex modifies Annex C, “Implementation-dependent elements”, in ISO/IEC 9075-2.

This Annex references those places where this part of ISO/IEC 9075 states explicitly that the actions of a con-
forming implementation are implementation-dependent.

1) Subclause 4.1, “Introduction to SQL/CLI”: When a <dynamic select statement> or <dynamic single row
select statement> is executed, a cursor is implicitly declared and opened; if a cursor name is not supplied
by the SQL/CLI application, an implementation-dependent cursor name is generated.

2) Subclause 4.2, “Return codes”: After the execution of a CLI routine, the values of all output arguments not
explicitly defined by this part of ISO/IEC 9075 are implementation-dependent.

3) Subclause 4.3, “Diagnostics areas in SQL/CLI”: If multiple status records are generated, then the order in
which status records are placed in a diagnostics area is implementation-dependent, with two exceptions.

4) Subclause 4.5, “Client-server operation”: If the execution of a CLI routine causes the implicit or explicit
execution of an <SQL procedure statement> by an SQL-server, diagnostic information is passed in an
implementation-dependent manner to the SQL-client and then into the appropriate diagnostics area. The
effect on diagnostic information of incompatibilities between the character repertoires supported by the
SQL-client and the SQL-server is implementation-dependent.

5) Subclause 5.5, “Implicit DESCRIBE USING clause”:

a) If D is not zero, then those fields and fields that are not applicable for a particular value of TYPE are
set to implementation-dependent values.

b) If D is not zero and the column name is implementation-dependent, then NAME is set to the implemen-
tation-dependent name of the column and UNNAMED is set to 1 (one).

c) If POPULATE IPD for C is True and D is not zero, then those fields and fields that are not applicable
for a particular value of TYPE are set to implementation-dependent values and NAME is set to an
implementation-dependent value.

d) If the name of the field is implementation-dependent, then NAME is set to the implementation-dependent
name of the field and UNNAMED is set to 1 (one).

6) Subclause 5.7, “Implicit CALL USING clause”:

a) If TDT is a locator type and SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

b) If TYPE indicates ROW, TV is the null value, and IP is neither a null pointer for IDA nor for any of
the subordinate descriptor areas of IDA that are not subordinate to an item descriptor area whose type
indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, then the value of

Implementation-dependent elements 363

CD 9075-3:200x(E)

the host variable addressed by IP for IDA, and that in all subordinate descriptor areas of IDA that are
not subordinate to an item descriptor area whose TYPE indicates ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR, is set to the appropriate 'Code' for SQL NULL DATA in
Table 27, “Miscellaneous codes used in CLI”, and the values of variables addressed by DP and LP are
implementation-dependent.

c) If TYPE does not indicate ROW,, TV is the null value and IP is not a null pointer, then the value of the
host variable addressed by IP is set to the appropriate 'Code' for SQL NULL DATA in Table 27,
“Miscellaneous codes used in CLI”, and the values of the host variables addressed by DP and LP are
implementation-dependent.

7) Subclause 5.8, “Implicit FETCH USING clause”:

a) If TDT is a locator type and SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

b) If TYPE indicates ROW, TV is the null value, and IPE is not a null pointer for IDA nor for any of the
subordinate descriptor areas of IDA that are not subordinate to an item descriptor area whose type
indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, then the value of
the host variable addressed by IPE for IDA, and that in all subordinate descriptor areas of IDA that are
not subordinate to an item descriptor area whose TYPE indicates ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR, is set to the appropriate 'Code' for SQL NULL DATA in
Table 27, “Miscellaneous codes used in CLI”, and the values of variables addressed by DPE and LPE
are implementation-dependent.

c) If TYPE does not indicate ROW, TV is the null value, and IPE is not a null pointer, then the value of
the host variable addressed by IPE is set to the appropriate 'Code' for SQL NULL DATA in Table 27,
“Miscellaneous codes used in CLI”, and the values of the host variables addressed by DPE and LPE
are implementation-dependent.

8) Subclause 5.9, “Character string retrieval”:

a) If null termination is False for the current SQL-environment and L is not greater than TL, then the first
L octets of T are set to V and the values of the remaining octets of T are implementation-dependent.

b) If null termination is True for the current SQL-environment and L is not greater than (TL–NB), then
the first (L+NB) octets of T are set to V concatenated with a single implementation-defined null character
that terminates a C character string and the values of the remaining characters of T are implementation-
dependent.

9) Subclause 5.10, “Binary string retrieval”: If L is not greater than TL, then the first L octets of T are set to
V and the values of the remaining octets of T are implementation-dependent.

10) Subclause 6.5, “BindCol”: If an exception condition is raised, then the TYPE, OCTET_LENGTH, LENGTH,
DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields of IDA are set to
implementation-dependent values.

11) Subclause 6.6, “BindParameter”: If an exception condition is raised, then The TYPE, LENGTH, PRECISION,
and SCALE fields of IDA1 are set to implementation-dependent values and the TYPE, DATA_POINTER,
INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields of IDA2 are set to implementation-
dependent values.

12) Subclause 6.7, “Cancel”: The method of passing control between concurrently operating programs is
implementation-dependent.

364 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

13) Subclause 6.11, “Columns”: The value of COLUMN_SIZE in COLUMNS_QUERY is implementation-
dependent if the value of DATA_TYPE in the columns view is not among the specified values.

14) Subclause 6.12, “Connect”: AU and UN are used by the SQL-server, along with other implementation-
dependent values, to determined whether to accept or reject the establishment of an SQL-session.

15) Subclause 6.15, “DescribeCol”:

a) When information is retrieved from IRD, if the data type of C is neither exact numeric, datetime, nor
interval, then DecimalDigits is set to an implementation-dependent value.

b) If C has an implementation-dependent name, then the value retrieved is the implementation-dependent
name for C.

c) When information is retrieved from IRD, if the data type of C is neither exact numeric, approximate
numeric, datetime, interval, nor reference type, then ColumnSize is set to an implementation-dependent
value.

d) When information is retrieved from IRD, if the data type of C is neither character string, exact numeric,
approximate numeric, datetime, interval, or a reference type, then ColumnSize is set to an implementa-
tion-dependent value.

16) Subclause 6.18, “Error”: If the number of status records generated by the execution of R is zero or the
number of status records generated by the execution of R already processed by Error equals the number of
status records generated by the execution of R, then a completion condition is raised: no data, Sqlstate is
set to '00000', the values of NativeError, MessageText, and TextLength are set to implementation-dependent
values.

17) Subclause 6.19, “ExecDirect”: If P is a <dynamic select statement> or a <dynamic single row select state-
ment> and there is no cursor name associated with S, then a unique implementation-dependent name that
has the prefix 'SQLCUR' or the prefix 'SQL_CUR' becomes the cursor name associated with S.

18) Subclause 6.21, “Fetch”:

a) If ROWS_PROCESSED is greater than 0 (zero), then when the General Rules of Subclause 5.8, “Implicit
FETCH USING clause”, are applied with SS, RS, ROWS_PROCESSED, and S as SOURCE, ROWS,
ROWS PROCESSED, and ALLOCATED STATEMENT, respectively, if ROWS_PROCESSED is 0
(zero), then the values of all bound targets are implementation-dependent, and CR remains positioned
on NR.

b) If ROWS_PROCESSED is greater than 0 (zero), then the values of all bound targets are implementation-
dependent and CR remains positioned on NR.

19) Subclause 6.22, “FetchScroll”: If a completion condition: no data has not been raised, and an exception
condition is not raised during derivation of any <derived column> associated with NR, but an exception
condition occurs during the derivation of any target value, then the values of all the bound targets are
implementation-dependent.

20) Subclause 6.29, “GetCursorName”: If there is no cursor name associated with S, then a unique implemen-
tation-dependent name that has the prefix 'SQLCUR' or the prefix 'SQL_CUR' becomes the cursor name
associated with S.

21) Subclause 6.30, “GetData”: If the fetched row associated with S is empty, then a completion condition is
raised: no data and TargetValue, StringLength, and StrLen_or_Ind are set to implementation-dependent
values.

Implementation-dependent elements 365

CD 9075-3:200x(E)

22) Subclause 6.33, “GetDiagField”:

a) If TYPE is 'HEADER', DI indicates ROW_COUNT, and S is a <delete statement: searched> cpmtao-
momg a <search condition>, or an <update statement: searched> containing a <search condition>, then
the value retrieved following the execution by R of an SQL-statement that does not directly result in
the execution of a <delete statement: searched>, <insert statement>, <merge statement>, or <update
statement: searched> is implementation-dependent.

b) If null termination is False for the current SQL-environment and L is not greater than BL, then the first
L octets of DiagInfo are set to V and the values of the remaining octets of DiagInfo are implementation-
dependent.

c) If null termination is True for the current SQL-environment and L is not greater than (BL–k), then the
first (L+k) octets of DiagInfo are set to V concatenated with a single implementation-defined null
character that terminates a C character string and the values of the remaining characters of DiagInfo
are implementation-dependent.

23) Subclause 6.34, “GetDiagRec”:

a) If null termination is False for the current SQL-environment and L is not greater than BL, then the first
L octets of MessageText are set to V and the values of the remaining octets of MessageText are
implementation-dependent.

b) If null termination is True for the current SQL-environment and L is not greater than (BL–k), then the
first (L+k) octets of MessageText are set to V concatenated with a single implementation-defined null
character that terminates a C character string and the values of the remaining characters of MessageText
are implementation-dependent.

24) Subclause 6.39, “GetLength”: If SV contains the null value, and either IndicatorValue is not referenced by
a pointer or the value of that pointer is not a null pointer, then the value of StringLength is implementation-
dependent.

25) Subclause 6.41, “GetPosition”: If SRCL represents the null value and either IndicatorValue is not referenced
by a pointer or the value of that pointer is not a null pointer, then the value of all output arguments other
than IndicatorValue is implementation-dependent.

26) Subclause 6.44, “GetSubString”: If SRCL represents the null value and either IndicatorValue is not referenced
by a pointer or the value of that pointer is not a null pointer, then the value of all output arguments other
than IndicatorValue is implementation-dependent.

27) Subclause 6.49, “ParamData”: It is implementation-dependent whether the establishment of TV occurs at
ParamData time or during the preceding invocation of PutData.

28) Subclause 6.50, “Prepare”:

a) If P is a <dynamic select statement> or a <dynamic single row select statement> and there is no cursor
name associated with S, then a unique implementation-dependent name that has the prefix 'SQLCUR'
or the prefix 'SQL_CUR' becomes the cursor name associated with S.

b) The validity of a prepared statement in an SQL-transaction different from the one in which the statement
was prepared is implementation-dependent.

29) Subclause 6.56, “SetDescField”:

a) If FI indicates TYPE, then all fields of IDA other than those prescribed are set to implementation-
dependent values.

366 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

b) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime
type>, then all the fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to
implementation-dependent values.

c) If an exception condition is raised, then the field of IDA indicated by FI is set to an implementation-
dependent value.

30) Subclause 6.57, “SetDescRec”: If an exception condition is raised, then all fields of IDA for which specific
values were provided in the invocation of SetDescRec are set to implementation-dependent values.

31) Subclause 6.60, “SpecialColumns”:

a) SPECIAL_COLUMNS_QUERY contains a row for each column that is part of a set of columns that
can be used to best uniquely identify a row within the tables listed in SS's Information Schema TABLES
view. Some tables may not have such a set of columns. Some tables may have more than one such set,
in which case it is implementation-dependent as to which set of columns is chosen. It is implementation-
dependent as to whether a column identified for a given table is a pseudo-column.

b) If the value of DATA_TYPE in the COLUMNS view is neither 'CHARACTER', 'CHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY', 'BINARY VARYING', 'BINARY LARGE
OBJECT', 'DECIMAL', 'NUMERIC', 'SMALLINT', 'INTEGER', 'REAL', 'DOUBLE PRECISION',
'FLOAT', 'DATE', 'TIME', 'TIMESTAMP', 'TIME WITH TIME ZONE', 'TIMESTAMP WITH TIME
ZONE', 'INTERVAL', or 'REF', then the value of COLUMN_SIZE in SPECIAL_COLUMNS_QUERY
is implementation-dependent.

Implementation-dependent elements 367

CD 9075-3:200x(E)

(Blank page)

368 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Annex E
(informative)

Incompatibilities with ISO/IEC 9075:2003

This Annex modifies Annex E, “Incompatibilities with ISO/IEC 9075-2:2003”, in ISO/IEC 9075-2.

This edition of this part of ISO/IEC 9075 introduces some incompatibilities with the earlier version of Database
Language SQL's Call-Level Interface as specified in ISO/IEC 9075-3:2003.

Except as specified in this Annex, features and capabilities of Database Language SQL's Call-Level Interface
are compatible with ISO/IEC 9075-3:1999.

Incompatibilities with ISO/IEC 9075:2003 369

CD 9075-3:200x(E)

(Blank page)

370 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

Annex F
(informative)

SQL feature taxonomy

Table 48, “Feature taxonomy and definition for mandatory features”, contains a taxonomy of the mandatory
features of the SQL language that are specified in this part of ISO/IEC 9075. In this table, the first column
contains a counter that may be used to quickly locate rows of the table; these values otherwise have no use and
are not stable — that is, they are subject to change in future editions of or even Technical Corrigenda to ISO/IEC
9075 without notice.

The column “Feature ID” column of this table specifies the formal identification of each feature and each sub-
feature contained in the table.

The “Feature Name” column of this table contains a brief description of the feature or subfeature associated
with the Feature ID value.

The “Feature Description” column of this table provides the only definition of the mandatory features of this
part of ISO/IEC 9075. This definition consists of indications of specific language elements supported in each
feature, subject to the constraints of all Syntax Rules, Access Rules, and Conformance Rules.

Table 48 — Feature taxonomy and definition for mandatory features

Feature NameFeature
ID

All facilities defined by this part of ISO/IEC 9075C0111

SQL feature taxonomy 371

CD 9075-3:200x(E)

(Blank page)

372 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

— A —
ABSOLUTE • 169, 170
ACTION • 175, 180
active SQL-transaction • 152, 293
ALL • 156, 243, 246, 304
AND • 131, 132, 140, 141, 142, 155, 156, 157, 177, 178,

182, 183, 220, 261, 262, 263, 289, 290, 296, 297, 298,
302, 303

ANY • 23, 28, 117, 119, 192, 195, 201, 205, 216, 222, 228,
234, 236, 238, 241, 250, 264, 268, 272, 277, 279, 281

ARRAY • 17, 39, 40, 43, 44, 50, 51, 55, 56, 62, 63, 64, 65,
66, 67, 196, 228, 274, 361, 363, 364

AS • 45, 46, 49, 54, 199, 207, 231, 252, 253, 254, 304,
305

ASENSITIVE • 17, 34, 239, 254, 282
associated statement is not prepared • 201, 203
AT • 64
attempt to concatenate a null value • 265
attribute cannot be set now • 279, 282, 283

— B —
BIGINT • 63, 64, 66, 67, 136, 137, 275, 287, 288, 351,

358, 359, 361
BINARY • 51, 56, 63, 64, 65, 67, 136, 197, 200, 226, 227,

230, 232, 234, 241, 242, 251, 252, 264, 265, 275, 287,
328, 361, 367

BOOLEAN • 63
BOTH • 145, 219, 220, 270, 274
BY • 133, 142, 178, 184, 223, 246, 263, 291, 298, 304,

305, 310

— C —
C • 38, 40
Feature C001, “CLI routine invocation in Ada” • 28, 313
Feature C002, “CLI routine invocation in C” • 28, 313

Feature C003, “CLI routine invocation in COBOL” • 28,
313

Feature C004, “CLI routine invocation in Fortran” • 28, 313
Feature C005, “CLI routine invocation in MUMPS” • 28,

313
Feature C006, “CLI routine invocation in Pascal” • 28, 313
Feature C007, “CLI routine invocation in PL/I” • 29, 313
CALL • 48
cannot modify an implementation row descriptor • 147,

277
CARDINALITY • 39, 40, 63
CASCADE • 174, 175, 180
CASE • 224, 309
CAST • 45, 46, 49, 54, 199, 231, 252, 253, 254, 304, 305
CATALOG • 49, 129, 139, 176, 181, 223, 224, 260, 288,

295, 301, 308, 310
CATALOG_NAME • 209, 210, 211
CHAIN • 155, 156, 157
CHAR • 308, 309, 343
CHAR_LENGTH • 131, 132, 140, 141, 173, 177, 178, 182,

183, 184, 261, 262, 289, 290, 296, 297, 302, 303, 353
CHARACTER • 23, 27, 28, 44, 48, 49, 51, 53, 56, 63, 64,

65, 67, 126, 128, 134, 135, 136, 143, 148, 150, 158, 160,
172, 173, 194, 197, 200, 202, 203, 212, 214, 218, 226,
227, 230, 232, 234, 241, 242, 243, 244, 251, 257, 259,
264, 265, 270, 275, 285, 287, 294, 299, 359, 360, 361,
367

CHARACTER_SET_CATALOG • 38, 40, 44, 45, 48, 49,
52, 53, 138, 198, 230, 231, 252, 253, 273, 274, 275

CHARACTER_SET_NAME • 38, 40, 44, 45, 48, 49, 52,
53, 138, 198, 230, 231, 252, 253, 273, 274, 275

CHARACTER_SET_SCHEMA • 38, 40, 44, 45, 48, 49,
52, 53, 138, 198, 230, 231, 252, 253, 273, 274, 275

CHARACTERS • 224, 309
CHECK • 210, 243, 244
CLASS_ORIGIN • 209, 354
<CLI by-reference prefix> • 21, 24
<CLI by-value prefix> • 21, 24

CD 9075-3:200x(E)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Leveling Rule, Table, or other descriptive text.

Index 373

<CLI generic name> • 21, 23, 24, 30, 111, 349
<CLI name prefix> • 21, 23, 111
<CLI parameter data type> • 22, 23, 30
<CLI parameter declaration> • 22, 23, 30
<CLI parameter list> • 21, 22, 23
<CLI parameter mode> • 22, 23, 24
<CLI parameter name> • 22
<CLI returns clause> • 21, 23
<CLI routine> • 5, 21, 23, 24, 27, 28, 29, 30, 349
<CLI routine name> • 21, 23, 24, 27, 30
CLI-specific condition • 11, 15, 16, 30, 31, 32, 47, 57, 58,

59, 113, 114, 115, 117, 118, 119, 120, 122, 123, 125,
126, 129, 130, 139, 140, 143, 144, 145, 147, 148, 150,
152, 154, 155, 156, 157, 158, 160, 163, 165, 168, 176,
181, 182, 187, 188, 190, 192, 195, 197, 201, 202, 203,
205, 206, 212, 214, 215, 216, 218, 219, 220, 221, 222,
223, 226, 228, 229, 234, 235, 236, 238, 239, 240, 241,
242, 243, 247, 248, 249, 250, 251, 252, 254, 257, 260,
261, 264, 265, 267, 268, 269, 270, 272, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282, 283, 284, 286, 288,
289, 292, 293, 295, 296, 301, 302

CLOSE • 190, 341
COALESCE • 224
COBOL • 28, 328, 361
COLLATION • 138, 224, 309
COLLATION_CATALOG • 38, 40, 138
COLLATION_NAME • 38, 40, 135, 138
COLLATION_SCHEMA • 38, 40, 138
COLUMN • 223, 310
column type out of range • 286
COLUMN_NAME • 128, 129, 132, 133, 134, 135, 141,

142, 209, 210, 259, 260, 285, 286
COLUMN_NUMBER • 14
COMMIT • 17, 155, 156, 224, 308, 340, 341
COMMITTED • 308, 309
CONDITION_IDENTIFIER • 212
CONDITION_NUMBER • 208
CONNECT • 308, 309, 339
CONNECTION • 33, 111, 113, 154, 156, 157, 158, 185,

187, 205, 214, 292, 351
connection does not exist • 30, 31, 114, 115, 152, 192,

218, 221, 222, 236, 293
connection exception • 30, 31, 33, 114, 115, 143, 145,

152, 192, 218, 221, 222, 236, 293
connection failure • 33
connection name in use • 143, 145
CONNECTION_NAME • 211, 354, 355
CONSTRAINT_CATALOG • 173, 178, 179, 209, 210, 259
CONSTRAINT_NAME • 173, 175, 178, 179, 181, 209,

210, 259, 260
CONSTRAINT_SCHEMA • 173, 178, 179, 209, 210, 259

CONSTRAINTS • 156
COUNT • 18, 36, 39, 42, 48, 52, 117, 118, 120, 122, 190,

201, 202, 203, 207, 272, 273, 275, 277, 278, 350
CREATE • 128, 134, 172, 243, 259, 285, 294, 299, 340
CURRENT • 17, 162, 163, 164, 195, 239, 283, 286, 311
CURRENT_CATALOG • 34, 255
CURRENT_DEFAULT_TRANSFORM_GROUP • 34, 255
CURRENT_PATH • 34, 255
CURRENT_ROLE • 34, 255
CURRENT_SCHEMA • 34, 255
CURRENT_TRANFORM_GROUP_FOR_TYPE • 255
CURRENT_TRANSFORM_GROUP_FOR_TYPE • 34, 38,

40, 69
CURRENT_USER • 34, 255
CURSOR • 8, 17, 34, 168, 190, 195, 223, 224, 238, 239,

254, 282, 283, 308, 311, 340
cursor operation conflict • 209
cursor sensitivity exception • 35, 255
CURSOR_NAME • 209, 210

— D —
DATA • 43, 50, 51, 55, 64, 200, 223, 224, 227, 232, 235,

242, 250, 264, 309, 311, 364
data exception • 50, 51, 55, 56, 200, 211, 226, 232, 234,

242, 350, 354, 356
data type transform function violation • 46, 50, 55, 199,

232
DATE • 120, 136, 137, 138, 276, 287, 288, 367
DATETIME_INTERVAL_CODE • 38, 40, 44, 45, 48, 52,

63, 127, 198, 204, 230, 252, 253, 275, 276, 367
DATETIME_INTERVAL_PRECISION • 38, 40, 44, 45, 48,

52, 63, 198, 230, 252, 253, 275, 276
DAY • 121, 276
DECIMAL • 63, 64, 65, 67, 136, 137, 275, 287, 288, 357,

367
DECLARE • 34, 254, 340
DEFAULT • 42, 63, 64, 117, 119, 136, 144, 145, 165, 168,

175, 180, 197, 224, 229, 230, 287, 309, 311, 352
DEFERRABLE • 175, 181, 353
DEFERRED • 175, 181, 353
DEFINED • 38, 40, 48, 52, 63, 64, 65, 67, 198, 361
DEGREE • 39, 40, 63, 64, 66, 67, 274
DELETE • 156, 324, 343
DESCRIBE • 36
DESCRIPTOR • 17, 36, 37, 39, 59, 115, 147, 153, 154,

188, 201, 203, 205, 214, 240, 272, 277, 283, 284, 292,
351

DISCONNECT • 341
disconnect error • 153
DISTINCT • 304, 305

374 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

DOUBLE • 63, 64, 66, 67, 136, 276, 287, 351, 358, 359,
367

dynamic parameter value needed • 11, 31, 47, 251, 254
dynamic parameter value needed • 61
dynamic SQL error • 42, 43, 45, 46, 48, 49, 50, 52, 53, 54,

55, 117, 119, 126, 127, 150, 195, 196, 197, 198, 199,
201, 203, 226, 228, 229, 230, 231, 232, 234, 235, 241,
253, 265, 272, 274, 275, 277, 350, 353, 354, 355

DYNAMIC_FUNCTION • 36, 206
DYNAMIC_FUNCTION_CODE • 36, 206

— E —
ESCAPE • 132, 142, 224, 271, 297, 298, 303
EXEC • 64, 339, 340, 341
EXECUTE • 42, 47, 161
external routine exception • 208, 211, 354
external routine invocation exception • 208, 211, 354

— F —
FALSE • 17, 239, 240, 279, 283, 284
feature not supported • 33, 143
FETCH • 52, 341
FILE • 348
FIRST • 148, 169, 170
FLOAT • 63, 64, 66, 67, 136, 275, 287, 351, 357, 359, 367
FOR • 34, 121, 131, 132, 140, 141, 177, 182, 183, 254,

261, 262, 289, 290, 296, 297, 302, 303, 340
FREE • 190
FROM • ?, 121, 131, 132, 133, 140, 141, 142, 145, 156,

177, 178, 182, 183, 184, 197, 207, 219, 220, 223, 224,
225, 230, 235, 237, 246, 261, 262, 263, 270, 274, 289,
290, 291, 296, 297, 298, 302, 303, 304, 305, 311, 340

function sequence error • 31, 59, 125, 126, 150, 152, 155,
163, 165, 168, 187, 188, 195, 226, 228, 234, 241, 247,
248, 249, 250, 251, 264, 267, 284

— G —
GLOBAL • 300, 304, 359
GROUP • 223, 310, 311

— H —
HOLD • 34, 254
HOUR • 121, 276

— I —
IMMEDIATE • 156, 175, 181, 353
<implementation-defined CLI generic name> • 22, 23, 24,

349
IN • 23, 41, 44, 65, 66, 111, 113, 116, 117, 119, 121, 122,

123, 125, 126, 128, 134, 143, 147, 148, 150, 152, 154,

158, 160, 163, 165, 168, 172, 185, 186, 187, 190, 192,
194, 195, 201, 203, 205, 214, 216, 218, 221, 222, 223,
226, 228, 229, 234, 236, 238, 241, 243, 244, 247, 248,
249, 250, 257, 259, 264, 267, 268, 270, 272, 277, 279,
281, 285, 292, 294, 299, 310, 311

inconsistent descriptor information • 275, 278
INDICATOR • 43
INITIALLY • 175, 181, 353
INOUT • 44, 48, 65, 66, 121, 122
INSENSITIVE • ?, 34, 35, 239, 254, 255, 282
INSERT • 308, 310, 340, 343, 347
INT • 308, 309
INTEGER • 15, 23, 27, 28, 63, 64, 66, 67, 111, 112, 113,

116, 117, 119, 123, 125, 126, 128, 134, 135, 136, 137,
143, 147, 148, 150, 152, 154, 158, 160, 163, 165, 168,
172, 185, 186, 187, 190, 192, 193, 194, 195, 201, 203,
205, 214, 216, 218, 221, 222, 226, 228, 234, 236, 238,
240, 241, 243, 244, 247, 248, 249, 250, 257, 259, 264,
267, 268, 269, 270, 272, 275, 277, 279, 281, 284, 285,
287, 288, 292, 294, 299, 328, 351, 358, 359, 361, 367

integrity constraint violation • 156, 209
integrity constraint violation • 209, 211
INTERVAL • 38, 40, 127, 136, 137, 138, 275, 276, 286,

287, 367
interval field overflow • 211
INTO • 308, 310, 340, 341, 347
invalid attribute identifier • 154, 190, 192, 206, 216, 234,

238, 268, 279, 281, 292, 293
invalid attribute value • 205, 219, 220, 226, 235, 239, 241,

242, 265, 279, 281, 282, 283, 284
invalid authorization specification • 145, 352
invalid catalog name • 274
invalid character set name • 274
invalid character value for cast • 211
invalid condition number • 206, 214
invalid cursor name • 160, 257, 270, 271
invalid cursor position • 195, 283
Invalid cursor state • 283
invalid cursor state • 125, 128, 134, 160, 163, 165, 168,

172, 210, 243, 257, 259, 270, 285, 294, 299
invalid cursor state • 240
invalid data type • 120, 243, 276
invalid data type in application descriptor • 117, 119, 197,

229
invalid descriptor count • 42, 48, 52, 195, 228
invalid descriptor field identifier • 126, 201, 202, 272
invalid descriptor index • 117, 119, 126, 127, 150, 195,

196, 197, 201, 203, 228, 229, 230, 272, 277, 353, 354,
355

invalid fetch orientation • 168
invalid FunctionId specified • 221

Index 375

CD 9075-3:200x(E)

invalid handle • 11, 30, 31, 32, 113, 114, 115, 143, 147,
148, 152, 154, 155, 156, 157, 158, 187, 188, 192, 205,
214, 216, 218, 221, 222, 236, 268, 279, 292, 293

invalid handle • 61
invalid information type • 223, 236
invalid LEVEL value • 274, 275
invalid parameter mode • 119
invalid retrieval code • 148
invalid schema name • 274
invalid specification • 156, 157, 226, 234, 235, 241
invalid string length or buffer length • 57, 58, 118, 122,

130, 139, 140, 144, 145, 160, 176, 181, 182, 212, 215,
219, 251, 252, 257, 261, 265, 268, 269, 270, 273, 274,
280, 284, 288, 289, 296, 301, 302

invalid transaction operation code • 155
invalid transaction state • 152, 293
invalid transaction termination • 155, 156
invalid use of automatically-allocated descriptor handle •

188, 281, 282
invalid use of null pointer • 16, 129, 139, 176, 181, 260,

288, 295, 301
IS • 244
ISOLATION • 224, 309

— J —
JOIN • 207

— K —
KEY • 178, 243, 259
KEY_MEMBER • 37, 38, 39, 40
KEY_TYPE • 36, 37, 39

— L —
LARGE • 51, 56, 63, 64, 65, 67, 136, 197, 200, 226, 227,

230, 232, 234, 241, 242, 251, 252, 264, 265, 275, 287,
313, 361, 367

LAST • 169, 170
LENGTH • 38, 40, 44, 45, 48, 52, 63, 118, 122, 193, 198,

223, 230, 244, 252, 253, 275, 310, 311, 364
LEVEL • 37, 39, 41, 42, 43, 44, 45, 48, 49, 52, 53, 62, 65,

66, 127, 150, 165, 168, 196, 197, 228, 230, 250, 254,
264, 274, 275, 350

LIKE • 132, 142, 271, 298, 303
limit on number of handles exceeded • 113, 114, 115
LOCAL • 300, 304
LOCATOR • 43, 50, 51, 55, 56, 63, 64, 65, 66, 67, 226,

234, 241, 274, 361, 363, 364
locator exception • 226, 234, 235, 241

— M —

MAX • 196, 228, 254
memory allocation error • 15, 113, 114, 115, 117, 120,

273, 277
memory management error • 15
MERGE • 343
MESSAGE_LENGTH • 209
MESSAGE_OCTET_LENGTH • 209
MESSAGE_TEXT • 208, 209, 354
MINUTE • 121, 276
MODULE • 210
MONTH • 121
MORE • 208
multiple server transactions • 33, 143
MULTISET • 17, 43, 44, 50, 51, 55, 56, 62, 64, 65, 66, 67,

196, 228, 274, 361, 363, 364

— N —
NAME • ?, ?, 16, 17, 37, 38, 39, 40, 129, 139, 156, 157,

176, 181, 192, 204, 223, 224, 260, 268, 288, 295, 301,
308, 309, 310, 311, 340, 341, 346, 347, 363

NEXT • 8, 148, 168, 169, 170
NO • 137, 175, 180, 286, 291
no additional result sets returned • 247, 248
no data • 11, 12, 31, 32, 127, 148, 149, 158, 166, 170,

195, 201, 203, 206, 215, 247, 248, 365
no subclass • 60
non-string data cannot be sent in pieces • 264
NOT • 128, 134, 135, 172, 173, 175, 181, 243, 244, 259,

285, 288, 294, 353
NULL • 15, 16, 43, 44, 50, 51, 55, 64, 65, 128, 130, 134,

135, 139, 140, 144, 160, 172, 173, 175, 176, 180, 181,
182, 200, 216, 218, 219, 224, 227, 232, 235, 242, 243,
244, 250, 257, 259, 261, 264, 268, 269, 270, 273, 279,
280, 284, 285, 288, 289, 294, 295, 296, 301, 302, 304,
305, 308, 309, 310, 340, 341, 343, 345, 364

null value, no indicator parameter • 50, 51, 55, 200, 226,
232, 234, 242

NULLABLE • 37, 39, 134, 137, 204, 243, 244, 286, 320
nullable type out of range • 286
NULLS • 137, 286, 291
NUMBER • 206
NUMERIC • 63, 64, 65, 66, 136, 137, 275, 287, 288, 357,

367
numeric value out of range • 211

— O —
OBJECT • 51, 56, 63, 64, 65, 67, 136, 197, 200, 226, 227,

230, 232, 234, 241, 242, 251, 252, 264, 265, 275, 287,
313, 361, 367

OCTET_LENGTH • 38, 40, 48, 52, 118, 204, 275, 364
OCTETS • 223, 311

376 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

OF • 17, 162, 163, 164, 195, 239, 283
ON • 156, 207
ONLY • 293
OPEN • 34, 42, 340
operation canceled • 123
OPTION • 210
optional feature not implemented • 239, 282, 283
OR • 244, 271, 304
ORDER • 133, 142, 178, 184, 223, 246, 263, 291, 298,

304, 305, 310
OUT • 23, 48, 65, 66, 111, 112, 113, 116, 122, 126, 148,

150, 158, 192, 194, 195, 201, 203, 205, 214, 216, 218,
221, 222, 226, 228, 234, 236, 238, 241, 249, 250, 267

OUTER • 207

— P —
PARAMETER_MODE • 39, 41, 65, 66, 209, 211, 228, 275
PARAMETER_NAME • 209, 211
PARAMETER_ORDINAL_POSITION • 39, 41, 209, 211,

275
PARAMETER_SPECIFIC_CATALOG • 39, 41, 275
PARAMETER_SPECIFIC_NAME • 39, 41, 275
PARAMETER_SPECIFIC_SCHEMA • 39, 41, 275
PATH • 311
POSITION • 17, 162, 163, 164, 195, 239, 283
PRECISION • 38, 40, 42, 44, 45, 48, 49, 52, 53, 63, 64,

65, 66, 67, 122, 136, 165, 168, 197, 198, 204, 230, 231,
244, 246, 252, 253, 275, 276, 287, 351, 357, 358, 359,
364, 367

prepared statement not a cursor specification • 126, 150
PRIMARY • 175, 178, 181, 243, 259
PRIOR • 169, 170

— R —
READ • 293, 308, 309
REAL • 63, 64, 66, 67, 136, 276, 287, 351, 358, 359, 367
REF • 38, 40, 63, 64, 66, 67, 136, 287, 367
RELATIVE • 169, 170
RELEASE • 16, 156
REPEATABLE • 308, 309
request rejected • 35, 255
RESTRICT • 174, 175, 180
restricted data type attribute violation • 45, 46, 49, 50, 53,

54, 55, 198, 199, 226, 231, 232, 234, 235, 241, 253, 350,
354

RETURNS • 23, 111, 112, 113, 116, 117, 119, 123, 125,
126, 128, 134, 143, 147, 148, 150, 152, 154, 158, 160,
163, 165, 168, 172, 185, 186, 187, 190, 192, 194, 195,
201, 203, 205, 214, 216, 218, 221, 222, 226, 228, 234,

236, 238, 241, 243, 247, 248, 249, 250, 257, 259, 264,
267, 268, 270, 272, 277, 279, 281, 285, 292, 294, 299

RIGHT • 207
ROLE • 311
ROLLBACK • 16, 155, 156, 157
ROUTINE_CATALOG • 209, 211
ROUTINE_NAME • 209, 211
ROUTINE_SCHEMA • 209, 211
ROW • 17, 39, 40, 43, 44, 50, 55, 62, 63, 64, 65, 66, 67,

196, 228, 274, 286, 363, 364
row value out of range • 283
ROW_COUNT • 12, 162, 164, 206, 256, 366
ROW_NUMBER • 11, 12, 14, 19, 54, 56, 166, 171, 212

— S —
SAVEPOINT • 16, 17, 156, 157, 192, 268
savepoint exception • 156, 157
SCALE • 38, 40, 42, 44, 45, 48, 49, 52, 53, 63, 64, 65, 66,

67, 122, 165, 168, 197, 198, 204, 230, 231, 244, 252,
253, 275, 357, 358, 364

SCHEMA • 223, 311
SCHEMA_NAME • 209, 210, 211
SCOPE • 285, 286, 290, 291, 358
scope out of range • 286
SCOPE_CATALOG • 38, 40, 44, 45, 48, 49, 52, 53, 138,

198, 252, 253, 275
SCOPE_NAME • 38, 40, 44, 45, 48, 49, 52, 53, 135, 139,

198, 252, 253, 275
SCOPE_SCHEMA • 38, 40, 44, 45, 48, 49, 52, 53, 138,

198, 252, 253, 275
SCROLL • 34, 254
SCROLLABLE • 8
SEARCH • 132, 142, 224, 297, 303
SECOND • 121, 276
SELECT • ?, 133, 142, 178, 184, 207, 220, 223, 224, 225,

236, 246, 263, 291, 298, 304, 305, 310, 311, 340, 342,
343

SENSITIVE • 34, 35, 239, 254, 255, 282
SEQUENCE • 224, 308
SERIALIZABLE • 308, 309
SERVER • 224, 309
server declined the cancellation request • 123
SERVER_NAME • 211, 354, 355
SESSION • 286, 311
SESSION_USER • 34, 255
SET • 33, 156, 175, 180, 243, 244
SMALLINT • 23, 27, 28, 63, 64, 66, 67, 111, 112, 113,

116, 117, 119, 123, 125, 126, 128, 134, 136, 137, 143,
147, 148, 150, 152, 154, 158, 160, 163, 165, 168, 172,
173, 185, 186, 187, 190, 192, 194, 195, 201, 203, 205,

Index 377

CD 9075-3:200x(E)

214, 216, 218, 221, 222, 226, 228, 234, 236, 238, 241,
243, 244, 247, 248, 249, 250, 257, 259, 264, 267, 268,
270, 272, 275, 277, 279, 281, 285, 287, 288, 292, 294,
299, 328, 351, 358, 359, 361, 367

SOURCE • 224, 309
SPECIFIC_NAME • 209, 211
SQL • 21
SQL-client unable to establish SQL-connection • 145
SQL-server rejected establishment of SQL-connection •

145
SQLR • 21
SQLSTATE • 11, 208, 209, 210, 211, 212, 215, 349, 354
STATEMENT • 114, 116, 152, 154, 158, 187, 190, 205,

214, 223, 292, 311, 351
string data, right truncation • 57, 58, 211, 271, 274
SUBCLASS_ORIGIN • 209, 354
SUBSTRING • 131, 132, 140, 141, 177, 182, 183, 197,

230, 235, 261, 262, 289, 290, 296, 297, 302, 303
successful completion • 31, 123, 124, 247, 248
syntax error or access rule violation • 160, 210, 257
SYSTEM • 300, 304, 311
SYSTEM_USER • 34, 255

— T —
TABLE • 128, 134, 172, 223, 243, 259, 285, 294, 299, 300,

304, 310, 311, 340, 359
TABLE_NAME • 128, 129, 131, 132, 133, 134, 135, 141,

142, 209, 210, 211, 259, 260, 262, 263, 290, 294, 295,
297, 298, 299, 300, 303, 305

TEMPORARY • 300, 304, 359
TIME • 136, 137, 138, 276, 287, 288, 367
TIMESTAMP • 136, 137, 138, 276, 287, 288, 367
TO • 121, 276, 339
TOP_LEVEL_COUNT • 36, 39, 62, 65, 66, 117, 119, 120,

122, 126, 150, 165, 168, 195, 228, 249, 250
TRANSACTION • 224, 286, 309
transaction rollback • 12, 156, 209, 210, 352
TRANSACTION_ACTIVE • 208
TRANSACTIONS_COMMITTED • 208
TRANSACTIONS_ROLLED_BACK • 208
TRANSFORM • 311
TRIGGER_CATALOG • 209, 210
TRIGGER_NAME • 209, 210
TRIGGER_SCHEMA • 209, 210
triggered action exception • 156, 210
triggered action exception • 210
triggered data change violation • 209, 210
TRIM • 131, 132, 140, 141, 145, 177, 182, 183, 219, 220,

261, 262, 270, 274, 289, 290, 296, 297, 302, 303, 304

TRUE • 129, 130, 139, 140, 175, 176, 181, 182, 237, 260,
261, 279, 283, 284, 288, 289, 295, 296, 301, 302

TYPE • 37, 38, 39, 40, 42, 43, 44, 45, 48, 50, 52, 55, 62,
63, 64, 65, 66, 67, 118, 122, 127, 136, 165, 168, 196,
197, 198, 204, 228, 229, 230, 251, 252, 253, 264, 274,
275, 276, 287, 350, 357, 358, 361, 363, 364, 366, 367

— U —
UNCOMMITTED • 309
unhandled user-defined exception • 212
UNIQUE • 135, 175, 236, 299
UNKNOWN • 288
UNNAMED • 37, 38, 39, 40, 320, 363
UPDATE • 324, 343
UPPER • 27, 131, 132, 140, 141, 177, 178, 182, 183, 262,

289, 290, 296, 297, 302, 303
USER • 18, 115, 223, 272, 311, 339
USER_DEFINED_TYPE_CATALOG • 38, 40, 44, 45, 48,

52, 53, 138, 198, 230, 231, 252, 275, 300
USER_DEFINED_TYPE_CODE • 38
USER_DEFINED_TYPE_NAME • 38, 40, 44, 45, 48, 49,

52, 53, 138, 198, 230, 231, 252, 275, 301
USER_DEFINED_TYPE_SCHEMA • 38, 40, 44, 45, 48,

49, 52, 53, 138, 198, 230, 231, 252, 275, 300
USING • 36, 42, 48, 52
using clause does not match dynamic parameter

specifications • 42, 43, 265, 350
using clause does not match target specifications • 48, 52,

197, 230

— V —
VALUE • 193, 240
VALUES • 308, 310, 340, 347
VARCHAR • 304, 305
VARYING • 27, 49, 53, 56, 63, 64, 65, 67, 128, 134, 135,

136, 172, 173, 197, 200, 202, 212, 230, 232, 241, 242,
243, 244, 251, 252, 259, 264, 265, 275, 285, 287, 294,
299, 359, 360, 367

VERSION • 224, 309
VIEW • 300, 304, 359

— W —
warning • 10, 12, 19, 31, 32, 54, 56, 57, 58, 153, 167, 208,

209, 211, 271, 274, 354
WHERE • 133, 142, 178, 184, 207, 220, 223, 224, 225,

237, 246, 263, 291, 298, 305
WITH • 34, 136, 137, 138, 210, 254, 276, 287, 288, 367
with check option violation • 210
WORK • 340, 341
WRITE • 293

378 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)

— Y —
YEAR • 121

— Z —
zero-length character string • 51, 56, 200, 232, 242, 350,

354, 356
ZONE • 136, 137, 138, 276, 287, 288, 367

Index 379

CD 9075-3:200x(E)

