Committee Draft ISO/IEC CD

Date: Reference number: ISO/JTC 1/SC
2006-02-18 32N1409

Supersedes document SC 32N1201

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO CHANGE. IT SHOULD NOT
BE USED FOR REFERENCE PURPOSES.

ISO/IEC JTC 1/SC | Circulated to P- and O-members, and to technical committees
32 and organizations in liaison for voting (P-members only) by:
Data Management

and |nterChange 2006-05-18

Secretariat: Please return all votes and comments in electronic form directly
USA (ANSI) to the SC 32 Secretariat by the due date indicated.

ISO/IEC CD 9075-03:200x(E)

Title: Information technology - Information technology - Database Languages - SQL -
Part 3: Call-Level Interface (SQL/CLI)

Project: 1.32.03.06.03.00

Introductory note: The attached document is hereby submitted for a three-month letter
ballot to the National Bodies of ISO/IEC JTC 1/SC 32. The ballot
starts 2006-02-18.

Medium: E
No. of pages: 390

Address Reply to: SC 32 Secretary, ISO/IEC JTC 1/SC 32,
Farance Inc, Island Box 256, New York, NY 10044-0205, United States of America

Telephone: +1 212 486-4700; E-mail: SC32-Sec@JTC1SC32.0org

ISO/IEC JTC 1/SC 32

Date: 2006-02-01

CD 9075-3:200x(E)

ISO/IEC JTC 1/SC 32/WG 3

The United States of America (ANSI)

Information technology — Database languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

Technologies de l'information — Langages de base de données — SQL —
Partie 3: Interface de Niveau d'Appel (SQL/CLI)

Document type: International Standard
Document subtype: Committee Draft (CD)
Document stage: (3) CD under Consideration
Document language: English

Copyright notice

This ISO document is a working draft or a committee draft and is copyright-protected by ISO. While the reproduction
of working drafts or committee drafts in any form for use by participants in the ISO standards development process
is permitted without prior permission from 1SO, neither this document nor any extract from it may be reproduced,
stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce for the purpose of selling it should be addressed as shown below or to ISO's
member body in the country of the requester.

ANSI Customer Service Department
25 West 43rd Street, 4th Floor

New York, NY 10036

Tele: 1-212-642-4980

Fax: 1-212-302-1286

Email: storemanager@ansi.org
Web: www.ansi.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violaters may be prosecuted.

Contents Page

B BT, . ..o iX
INEOTUCTION. .t e e e e X
o0 0 1 TS 1
2 NOrMAtiVe FE O ENCES. . .t e 3
2.1 JTCL StaNdards. oottt e e e 3
3 Definitions, notations, and CONVENTIONS.o ettt e e e e e e e 5
3.1 D NIt ONS. . . o 5
3.11 Definitions provided in Part 3. e 5
3.2 (00101771 ¢ Lo 3 5
3.2.1 Specification of routine definitions. 5
N O o Lo o] T 7
4.1 Introduction t0 SQL/CLL. 7
4.2 REIUIN COOBS. . o\ttt e 10
4.3 Diagnostics areas in SQL/CLL. i e 11
431 Setting of ROW_NUMBER and COLUMN_NUMBER fields.o i 14
4.4 Miscellaneous CharaCteristiCs.t e e 15
441 Handles. . ..o 15
4472 NUIL terminated StHiNGS. . . .« ..ot e e e e e e 15
443 NUIL POINEEIS. ot e e e e e e e e e e 15
444 Environment attributes.o o 16
445 CoNNECLiON AttrIDULES.o 16
4.4.6 Statement attribULeS. oo 17
447 CLI deSCHIPLOr ArAS. . .« v v vttt ettt e e e e e e e e e e e e e e 18
448 Obtaining diagnostics during multi-row fetch. 18
45 ClHENt-SEIVEr OPEIAtION. ottt et e e e e e e e e 19
5 Call-Level Interface SpecifiCations.ou it 21
5.1 SCLI FOULINE>. . . e e e 21
5.2 <CLI routineg> INVOCALION.ot e e e e e e e e e 30
5.3 IMPLICIt SEt CONNECLION. . . . oo e e e e e e 33
54 IMPIICIE CUPSOL. . o e e e e e e 34
55 Implicit DESCRIBE USING ClaUSE.ot e e e e e e 36
5.6 Implicit EXECUTE USING and OPEN USING Clauses.ottt 42
5.7 Implicit CALL USING ClaUSE. oo e 48
5.8 Implicit FETCH USING Clause.o e e 52
59 Character string retrieval. o 57

Contents iii

CD 9075-3: 200x(E)

5.10
5.11
5.12
5.13
5.14
5.15

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36

Binary sString retrieval.o 58
Deferred parameter CheCk. o 59
CLI-SPeCIfiC StAtUS COUBS. ottt et e e e e e e e e e e 60
Description of CLI item desCriptor @r€as.o vttt e ettt e e 62
Other tables associated With CLI. e e e e 74
SQL/CLI data type COMreSPONUENCES. . . . vttt ettt et et e et ettt 101
SO/ L FOULINES. . . vt 111
ANOCCONNECT. . . ot e e 111
AlOCENV. . 112
AlloCHaANAIE. . ..o 113
AL OC S ML, L o e 116
BINAC Ol ... e 117
BINdParam et er. e e 119
CaNCEl. . 123
ClOSECUIS O, ot ittt e e 125
GOl AU, . ..o e e 126
COlUMNPIIVIIEGES. . . oot e e e e e 128
COlUMINS. o 134
L] 1] 1) 143
COPY DS . v ettt 147
DaAtAS OUICES. . . oottt e e e 148
DesCribECOl. . .o 150
DISCONNECT. . . ottt e 152
ENATran. . . 154
(0 158
EXECDIECE. . . oo 160
EXBCULE. . o e e e 163
(o] o 165
FetChSCrOll. . 168
FOrRIgN K EY S, .« o 172
FreeConneCt. . ..o 185
FraBENV. . .o e 186
FreeHaNdle. 187
RS ML, . o 190
G ONMNEC AL, . . oo e 192
Gt UISOIN M. . o ottt e e 194
Gl AT, . . .o e e e 195
GetDESCRIeld. . ..o 201
Gt ESCREC. . ottt e e 203
GetDiagField. . .. o e 205
Gl D AgREC. . . . ot o 214
G E NV A, . o e e 216
GetFeaturelnfo. . .. o e 218

iv Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)

6.37 GetFUNCHIONS. . . . 221
6.38 GEtINTO. . oo 222
6.39 Gt ength. . . 226
6.40 GetPArAMDALA. oo 228
6.41 GRS ON. .« ot 234
6.42 GetSESSIONINTO. . . . o 236
6.43 GO S M AT, . . ot 238
6.44 GRtSUDSIIING. . . . oot 241
6.45 Gt TY P N O, . . oot 243
6.46 MOTERESUIES. . . oot 247
6.47 NEXERESUI. . . o 248
6.48 NUMRESUILCOIS.o e e e 249
6.49 ParambData. 250
6.50 PP, o 257
6.51 PIIMArY K Y S, .« . oo 259
6.52 PULID AT, . . .o 264
6.53 ROWC OUNT. . . e e e 267
6.54 SB I ONNEC AL, . . . 268
6.55 SEECUISOIN M. o .o et 270
6.56 SetDESCRIeld. . . oo 272
6.57 SBIDESCREC. . . ot 277
6.58 SB NV A . . . o 279
6.59 SO S ML AL . L o . 281
6.60 SPECIAlCOIUMNS. . . . e e 285
6.61 I T AN, . 292
6.62 TaDIE P IVIIEES. . . o o 294
6.63 Tab S, oo 299
7 DEfiNItioN SCNEMaL ... 307
7.1 SQL_IMPLEMENTATION_INFO base table.t e 307
7.2 SQL_SIZING base table.o 310
8 CONfOrMaANCE. o 313
8.1 Claims of conformance to SQL/CLL. e e 313
8.2 Additional conformance requirements for SQL/CLI. i i 313
8.3 Implied feature relationships of SQL/CLL. e e e 314
AnnexA Typical header files. 315
Al Cheader file SQLCLLH. 315
A2 COBOL library item SQLCLL.o 328
Annex B S 10 0] TSN O o] g | = 1 41 339
B.1 Create table, insert, SeleCt. o 339
B.2 INTEraCtive QUETY. . . . o oottt e e e e e e 342
B.3 Providing long dynamic arguments at Execute time.t 346
Annex C Implementation-defined elements.o e 349

Contents v

CD 9075-3: 200x(E)

Annex D Implementation-dependent elements.o e 363
Annex E Incompatibilities with ISO/IEC 9075:2003.ttt i 369
Annex F SQL featUre taXOnNOMIY. . ..ottt e e e 371
LK. oo e 373

vi Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)

Tables
Table Page
1 Header fields in SQL/CLI diagnOStiCS @ras.ottt ettt e e e e e e e e 12
2 Status record fields in SQL/CLI diagnostiCs areas.ttt 13
3 Supported calling conventions of SQL/CLI routines by language. ..., 24
4 Abbreviated SQL/CLI geNEIIC NAMES.ottt ettt et et e e 25
5 SQLSTATE class and subclass values for SQL/CLI-specific conditions. 60
6 Fields in SQL/CLI row and parameter desCriptor @reas. oottt 67
7 Codes used for implementation data types in SQL/CLIL. 69
8 Codes used for application data types in SQL/CLL. ot e 70
9 Codes associated with datetime data types in SQL/CLIL. i e 71
10 Codes associated with <interval qualifier> in SQL/CLL. i e 72
11 Codes associated with <parameter mode> in SQL/CLL. i e 73
12 Codes associated with user-defined types in SQL/CLL. 73
13 Codes used for SQL/CLI diagnostic fields. 74
14 Codes used for SQL/CLI handle types.ot 76
15 Codes used for transaction termination.ttt 76
16 Codes used for environment attributes. o 76
17 Codes used for connection attribues. ot 77
18 Codes used for statement attribULES.o o 77
19 Codes used for FreeStmt OptioNS.ttt e e e 77
20 Datatypes of attriutes. oo 78
21 Codes used for SQL/CLI descriptor fields. e 78
22 Ability to set SQL/CLI descriptor fields.t e 81
23 Ability to retrieve SQL/CLI descriptor fields. e 83
24 SQL/CLI descriptor field default values. o e 86
25 Codes used for fetCh Orientation. o 88
26 Multi-row fetCh Status COABS.ot e e 89
27 Miscellaneous codes USed IN CLL.ottt 89
28 Codes used to identify SQL/CLI rOULINES. oot e e 90
29 Codes and data types for implementation information. 93
30 Codes and data types for session implementation information. i 95
31 Values for TRANSACTION ISOLATION OPTION with StartTran.t 95
32 Values for TRANSACTION ACCESS MODE with StartTran. 95
33 Codes used for CONCISE data Ty PES. . . .ottt ettt e e et e e e e 96
34 Codes used with concise datetime data types in SQL/CLL. i i e 98
35 Codes used with concise interval data types in SQL/CLI. 98
36 Concise codes used with datetime data types in SQL/CLL. o 99
37 Concise codes used with interval data types in SQL/CLL. 99
38 Special parameter ValUES. o 100
39 Column types and scopes used with SpecialColumns. i 100

Contents vii

CD 9075-3: 200x(E)

40
4
42
43
44
45
46
47
48

SQL/CLI data type correspondences for Ada.t 101
SQL/CLI data type correspondences for C.ot 102
SQL/CLI data type correspondences for COBOL. it 104
SQL/CLI data type correspondences for Fortran.t 105
SQL/CLI data type correspondences for M. o 106
SQL/CLI data type correspondences for Pascal. 108
SQL/CLI data type correspondences for PL/L. 109
Implied feature relationships of SQL/CLL. o 314
Feature taxonomy and definition for mandatory features. 371

viii Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, 1SO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 9075-3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

This fourth edition of this part of ISO/IEC 9075 cancels and replaces the third edition, ISO/IEC 9075-3:2003.

ISO/IEC 9075 consists of the following parts, under the general title Information technology — Database lan-
guages — SQL:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schema (SQL/Schemata)

— Part 13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

Foreword ix

CD 9075-3: 200x(E)

I ntroduction

The organization of this part of ISO/IEC 9075 is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part of
ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions”, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts”, presents concepts used in the definition of the Call-Level Interface.

5) Clause 5, “Call-Level Interface specifications”, defines facilities for using SQL through a Call-Level
Interface.

6) Clause 6, “SQL/CLI routines”, defines each of the routines that comprise the Call-Level Interface.

7) Clause 7, “Definition Schema”, specifies extensions to the Definition Schema required for support of the
Call-Level Interface.

8) Clause 8, “Conformance”, defines the criteria for conformance to this part of ISO/IEC 9075.

9) Annex A, “Typical header files”, is an informative Annex. It provides examples of typical definition files
for application programs using the SQL Call-Level Interface.

10) Annex B, “Sample C programs”, is an informative Annex. It provides examples of using the SQL Call-
Level Interface in the C programming language.

11) Annex C, “Implementation-defined elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-defined.

12) Annex D, “Implementation-dependent elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

13) Annex E, “Incompatibilities with ISO/IEC 9075:2003”, is an informative Annex. It identifies incompatibil-
ities with ISO/IEC 9075-3:2003.

14) Annex F, “SQL feature taxonomy”, is an informative Annex. It contains a taxonomy of features of the SQL
language that are specified in this part of ISO/IEC 9075.

In the text of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page, and in Clause 5, “Call-Level
Interface specifications”, through Clause 8, “Conformance”, Subclauses begin a new page. Any resulting blank
space is not significant.

x Call-Level Interface (SQL/CLI)

INTERNATIONAL STANDARD ISO/IEC CD 9075-3:200x

| nfor mation technology — Database languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

1 Scope

This part of ISO/IEC 9075 defines the structures and procedures that may be used to execute statements of the
database language SQL from within an application written in a programming language in such a way that pro-
cedures used are independent of the SQL statements to be executed.

Scope 1

CD 9075-3: 200x(E)

(Blank page)

2 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
2.1 JTC1 standards

2 Normativereferences

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 JTC1lstandards

[1ISO1539] ISO/IEC 1539-1:2004, I nformation technology — Programming languages — Fortran — Part 1:
Base language.

[1SO1539-2] ISO/IEC 1539-2:2000, Information technology — Programming languages — Fortran —
Part 2: Varying length character strings.

[1SO1989] ISO 1989:2002, Information technology — Programming languages — COBOL.
[1S06160] I1SO 6160:1979, Programming languages — PL/I. (Endorsement of ANSI X3.53-1976).
[1ISO7185] ISO/IEC 7185:1990, Information technology — Programming languages — Pascal.
[1SO8652] ISO/IEC 8652:1995, Information technology — Programming languages — Ada.
ISO/IEC 8652:1995/Cor.1:2001.

[Framework] ISO/IEC 9075-1:200n, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

[Foundation] ISO/IEC 9075-2:200n, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation)

[Schemata] ISO/IEC 9075-11:200n, Information technology — Database languages — SQL — Part 11:
Information and Definition Schemas (SQL/Schemata)

[1SO9899] ISO/IEC 9899:1999, Programming languages — C.

ISO/IEC 9899:1999/Cor 1:2001, Technical Corrigendum to 1SO/IEC 9899:1999.

ISO/IEC 9899:1999/Cor 2:2004, Technical Corrigendum number 2 to 1SO/IEC 9899;1999.

[1SO10206] ISO/IEC 10206:1991, Information technology — Programming languages — Extended Pascal.
[1SO11756] ISO/IEC 11756:1999, Information technology — Programming languages — M.

Normativereferences 3

CD 9075-3: 200x(E)

(Blank page)

4 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
3.1 Definitions

3 Definitions, notations, and conventions

This Clause modifies Clause 3, “Definitions, notations, and conventions”, in |SO/IEC 9075-2.

3.1 Definitions

This Subclause modifies Subclause 3.1, “Definitions”, in 1SO/IEC 9075-2.

3.1.1 Definitionsprovided in Part 3

For the purposes of this document, the following definitions apply.
3.1.1.1 datasource: A synonym for the SQL-server that is part of the current SQL-connection.

3.1.1.2 handle A CLI object returned by an SQL/CLI implementation when a CLI resource is allocated
and used by an SQL/CLI application to reference that CLI resource.

3.1.1.3 inner table: The second operand of a left outer join or the first operand of a right outer join.

3.1.1.4 pseudo-column: A column that is part of a table but is not part of the descriptor for that table. An
example of such a pseudo-column is an implementation-defined row identifier.

3.1.1.5 rowset: One or more rows retrieved in a single invocation of the Fetch and FetchScroll routines.

3116 SQL/CLI application: An application that invokes <CLI routine>s specified in this part of ISO/IEC
9075.

3.2 Conventions

This Subclause modifies Subclause 3.3, “Conventions’, in |1 SO/IEC 9075-2.

3.2.1 Specification of routine definitions

The routines in this document are specified in terms of:
— Function: A short statement of the purpose of the routine.

— Definition: The name of the routine and the name, mode, and data type of each of its parameters.

Definitions, notations, and conventions 5

CD 9075-3:200x(E)
3.2 Conventions

— General Rules: A specification of the run-time effect of the routine. Where more than one General Rule
is used to specify the effect of a routine, the required effect is that which would be obtained by beginning
with the first General Rule and applying the Rules in numeric sequence until a Rule is applied that specifies
or implies a change in sequence or termination of the application of the Rules. Unless otherwise specified
or implied by a specific Rule that is applied, application of General Rules terminates when the last in the
sequence has been applied.

6 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

4 Concepts

This Clause modifies Clause 4, “Concepts”, in 1SO/IEC 9075-2.

4.1 Introductionto SQL/CLI

This Subclause is modified by Subclause 4.18, “Introduction to SQL/CLI"’, in ISO/IEC 9075-9.

The Call-Level Interface (SQL/CLI) is a binding style for executing SQL statements. This part of ISO/IEC
9075 provides specifications for routines that:

— Allocate and deallocate resources.

— Control connections to SQL-servers.

— Execute SQL statements using mechanisms similar to dynamic SQL.

— Obtain diagnostic information.

— Control transaction termination.

— Obtain information about the SQL/CLI implementation and the SQL-implementation.

A handleis a CLI object returned by an SQL/CLI implementation when a CLI resource is allocated; the handle
is used by an SQL/CLI application to reference that CLI resource. The AllocHandle routine allocates the
resources to manage an SQL-environment, an SQL-connection, a CLI descriptor area, or SQL-statement pro-
cessing; when invoked, it returns an environment handle, a connection handle, a descriptor handle, or a statement
handle, respectively. An SQL-connection is allocated in the context of an allocated SQL-environment. CLI
descriptor areas and SQL-statements are allocated in the context of an allocated SQL-connection. The FreeHandle
routine deallocates a specified resource. The AllocConnect, AllocEnv, and AllocStmt routines can be used to
allocate the resources to manage an SQL-connection, an SQL-environment, and SQL-statement processing,
respectively, instead of using the AllocHandle routine. The FreeConnect, FreeEnv, and FreeStmt routines can
be used to deallocate the specific resource instead of using FreeHandle.

Each allocated SQL-environment has an attribute that determines whether output character strings are null
terminated by the SQL/CLI implementation. The SQL/CLI application can set the value of this attribute by
using the routine SetEnvAttr and can retrieve the current value of the attribute by using the routine GetEnvAttr.

The Connect routine establishes an SQL-connection, which becomes the current SQL-connection . The Discon-
nect routine terminates an established SQL-connection. Switching between established SQL-connections occurs
automatically whenever the SQL/CLI application switches processing to a dormant SQL-connection, which
then becomes the current SQL-connection.

The ExecDirect routine is used for a one-time execution of an SQL-statement. The Prepare routine is used to
prepare an SQL-statement for subsequent execution using the Execute routine. In all three cases, the executed
SQL-statement can contain dynamic parameters.

Concepts 7

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

The interface for a description of dynamic parameters, dynamic parameter values, the result columns of a
<dynamic select statement> or <dynamic single row select statement>, and the target specifications for the
result columns is a CLI descriptor area. A CLI descriptor area for each type of interface is automatically allocated
when an SQL-statement is allocated. The SQL/CLI application may allocate additional CLI descriptor areas
and nominate them for use as the interface for the description of dynamic parameter values or the description
of target specifications by using the routine SetStmtAttr. The SQL/CLI application can determine the handle
value of the CLI descriptor area currently being used for a specific interface by using the routine GetStmtAttr.
The GetDescField and GetDescRec routines enable information to be retrieved from a CLI descriptor area. The
CopyDesc routine enables the contents of a CLI descriptor area to be copied to another CLI descriptor area.

When a <dynamic select statement> or <dynamic single row select statement> is prepared or executed imme-
diately, a description of the result columns is automatically provided in the applicable CLI implementation
descriptor area. In this case, the SQL/CLI application may additionally retrieve information by using the
DescribeCol and/or the ColAttribute routine to obtain a description of a single result column and by using the
NumResultCols routine to obtain a count of the number of result columns. The SQL/CLI application sets values
in the CLI application descriptor area for the description of the corresponding target specifications either
explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindCol.

When an SQL-statement is prepared or executed immediately, a description of the dynamic parameters is
automatically provided in the applicable CLI implementation descriptor area if this facility is supported by the
current SQL-connection. An attribute associated with the allocated SQL-connection indicates whether this
facility is supported. The value of the attribute may be retrieved using the routine GetConnectAttr. Regardless
of whether automatic description is supported, all dynamic input and input/output parameters shall be defined
in the application descriptor area before SQL-statement execution. This can be done either explicitly, by using
the routines SetDescField and SetDescRec, or implicitly, by using the routine BindParameter. The value of a
dynamic input or input/output parameter may be established before SQL-statement execution (immediate
parameter value) or may be provided during SQL-statement execution (deferred parameter value). Its description
in the CLI descriptor area determines which method is in use. The ParamData routine is used to cycle through
and process deferred input and input/output parameter values. The PutData routine is used to provide the deferred
values. The PutData routine also enables the values of character string input and input/output parameters to be
provided piece by piece.

Before a <call statement> is prepared or executed immediately, the SQL/CLI application may choose whether
or not to bind any dynamic output parameters in the CLI application descriptor area. This can be done either
explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindParam-
eter. After execution of the statement, values of unbound output and input/output parameters can be individually
retrieved using the GetParamData routine. The GetParamData routine also enables the retrieval of the values
of character and binary string output and input/output parameters to be accomplished piece by piece.

When a <dynamic select statement> or <dynamic single row select statement> is executed, a cursor is implicitly
declared and opened. The cursor name can be supplied by the SQL/CLI application by using the routine
SetCursorName. If a cursor name is not supplied by the SQL/CLI application, an implementation-dependent
cursor name is generated. The cursor name can be retrieved by using the GetCursorName routine.

The Fetch and FetchScroll routines are used to position an open cursor on a row and to retrieve the values of
bound columns for that row. A bound column is one whose target specification in the specified CLI descriptor
area defines a location for the target value. The Fetch routine always positions the open cursor on the next row,
whereas the FetchScroll routine may be used to position the open cursor on any of its rows. At the time that
the cursor is implicitly declared, the value of the CURSOR SCROLLABLE statement attribute shall be
SCROLLABLE, allowing the use of FetchScroll with a FetchOrientation other than NEXT. The SQL/CLI
application can set the value of this attribute by using the SetStmtAttr routine and can retrieve the current value
of the attribute by using the GetStmtAttr routine. The Fetch and FetchScroll routines can also retrieve multiple
rows in a single call; the set of rows thus retrieved is called a rowset. This is accomplished by setting the

8 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

ARRAY _SIZE field of the applicable application row descriptor to the desired number of rows. Note that the
single row fetch is just a special case of multi-row fetch, where the rowset size is 1 (one).

Values for unbound columns can be individually retrieved by using the GetData routine. The GetData routine
also enables the retrieval of the values of character and binary string columns to be accomplished piece by
piece. The current row of a cursor can be deleted or updated by executing a <preparable dynamic delete statement:
positioned> or a <preparable dynamic update statement: positioned>, respectively, for that cursor under a dif-
ferent allocated SQL-statement to the one under which the cursor was opened. The CloseCursor routine enables
a cursor to be closed.

Result sets can be returned to the SQL/CLI application as a result of invoking the Execute or ExecDirect routine,
supplying a statement handle whose current statement is a <call statement>. Such result sets are described and
processed in the same way as outlined above for the result sets produced by the execution of a <dynamic select
statement>. Multiple result sets may result from the execution of a single <call statement>. These result sets
are returned as an ordered set of result sets that can be processed one at a time or in parallel. To process the
result sets one at a time, once the processing of a given result set is complete, the MoreResults routine is used
to determine whether there are any additional result sets and, if there are, to position the cursor before the first
row in the next result set. To process the result sets in parallel, the NextResult routine is used to determine
whether there are any additional result sets and, if there are, to position a cursor before the first row in the next
result set.

Special routines, called catalog routines are available to return result sets from the Information Schema. These
routines are:

— ColumnPrivileges: Returns a list of the privileges held on the columns whose names adhere to the requested
pattern(s) within a single specified table. Most of this information can also be obtained by using the
ExecDirect routine to issue an appropriate query on the COLUMN_PRIVILEGES view of the Information
Schema.

— Columns: Returns the column names and attributes for all columns whose names adhere to the requested
pattern(s). Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the COLUMNS view of the Information Schema.

— ForeignKeys: Returns either the primary key of a single specified table together with the foreign keys in
all other tables that reference that primary key or the foreign keys of a single specified table together with
all the primary and unique keys in all other tables that are referenced by those foreign keys. Most of this
information can also be obtained by using the ExecDirect routine to issue an appropriate query on the
TABLE_CONSTRAINTS view and the REFERENTIAL_CONSTRAINTS view of the Information Schema.

— PrimaryKeys: Returns a list of the columns that constitute the primary key of a single specified table. Most
of this information can also be obtained by using the ExecDirect routine to issue an appropriate query on
the TABLE_CONSTRAINTS view and the KEY_COLUMN_USAGE view of the Information Schema.

— SpecialColumns: Returns a list of the columns which can uniquely identify any row within a single specified
table. Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate
guery on the COLUMNS view of the Information Schema.

— Tables: Returns information about the tables whose names adhere to the requested pattern(s) and type(s).
Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate query
on the TABLES view of the Information Schema.

— TablePrivileges: Returns a list of the privileges held on tables whose names adhere to the requested pattern(s).
Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate query
on the TABLE_PRIVILEGES view of the Information Schema.

Concepts 9

CD 9075-3:200x(E)
4.1 Introduction to SQL/CLI

These special routines are only available for a small portion of the metadata that is available in the Information
Schema. Other metadata (for example, that about SQL-invoked routines, triggers, and user-defined types) can
be obtained by executing appropriate queries on the views of the Information Schema.

The GetPosition, GetLength, and GetSubString routines can each be used with its own independent statement
handle to access a string value at the server that is represented by a Large Object locator in order to do any of
the following:

— The GetPosition routine may be used to determine whether a given substring exists within that string and,
if it does, to obtain an integer value that indicates the starting position of the first appearance of the given
substring.

— The GetLength routine may be used to obtain the length of that string as an integer.

— The GetSubString routine may be used to retrieve a portion of a string, or alternatively, to create a new
Large Object value at the server which is a portion of the string and to return a Large Object locator that
represents that value.

The Error, GetDiagField, and GetDiagRec routines obtain diagnostic information about the most recent routine
operating on a particular resource. The Error routine always retrieves information from the next status record,
whereas the GetDiagField and GetDiagRec routines may be used to retrieve information from any status record.

The number of rows affected by the last executed SQL-statement can be obtained by using the RowCount or
GetDiagField routine.

An SQL-transaction is terminated by using the EndTran routine. An SQL-transaction is implicitly initiated
whenever a CLI routine is invoked that requires the context of an SQL-transaction and no SQL-transaction is
active. An SQL-transaction is explicitly started, and its characteristics set, by using the StartTran routine.

NOTE 1 — Applications are prohibited from using the ExecDirect or Execute routines to execute <start transaction statement>s,
<commit statement>s, <rollback statement>s, and <release savepoint statement>s.

The Cancel routine is used to cancel the execution of a concurrently executing SQL/CLI routine; it is also used
to terminate the processing of deferred parameter values and the execution of the associated SQL-statement.

The GetFeaturelnfo, GetFunctions, Getinfo, GetSessionlInfo, and GetTypelnfo routines are used to obtain
information about the implementation. The DataSources routine returns a list of names that identify SQL-servers
to which the SQL/CLI application may be able to connect and returns a description of each such SQL-server.

4.2 Return codes

The execution of a CLI routine causes one or more conditions to be raised. The status of the execution is indicated
by a code that is returned either as the result of invoking a CLI routine that is a CLI function or as the value of
the ReturnCode argument of a CLI routine that is a CLI procedure.

The return code values and meanings are described in the following list. If more than one return code is possible,
then the one appearing later in the list is the one returned.

— A value of 0 (zero) indicates Success. The CLI routine executed successfully.

— A value of 1 (one) indicates Success with information. The CLI routine executed successfully but a
completion condition was raised: warning.

10 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.2 Return codes

— A value of 100 indicates No data found. The CLI routine executed successfully but a completion condition
was raised: no data.

— A value of 99 indicates Data needed. The CLI routine did not complete its execution because additional
data is needed. An exception condition was raised: CLI-specific condition — dynamic parameter value
needed.

— Avalue of -1 indicates Error. The CLI routine did not execute successfully. An exception condition other
than CLI-specific condition — invalid handle or CLI-specific condition — dynamic parameter value needed
was raised.

— Avalue of -2 indicates I nvalid handle. The CLI routine did not execute successfully because an exception
condition was raised: CLI-specific condition — invalid handle.

After the execution of a CLI routine, the values of every output argument that corresponds to an output
parameter whose value is not explicitly defined by this part of ISO/IEC 9075 is implementation-dependent.

In addition to providing the return code, for all CLI routines other than Error, GetDiagField, and GetDiagRec,
the SQL/CLI implementation records information about completion conditions and about exception conditions
other than CLI-specific condition — invalid handle in the diagnostics area associated with the resource being
utilized. The resource being utilized by a routine is the resource identified by its input handle. In the case of
CopyDesc, which takes two input handles, the resource being utilized is the one identified by TargetDescHandle.

4.3 Diagnosticsareasin SQL/CLI

Each diagnostics area comprises header information consisting of fields that contain general information
relating to the routine that was executed and zero (0) or more status records containing information about
individual conditions that occurred during the execution of the CLI routine. A condition that causes a status
record to be generated is referred to as a status condition.

At the beginning of the execution of any CLI routine other than Error, GetDiagField, and GetDiagRec, the
diagnostics area for the resource being utilized is emptied. If the execution of such a routine does not result in
the exception condition CLI-specific condition — invalid handle or the exception condition CLI-specific condition
— dynamic parameter value needed, then:

— Header information is generated in the diagnostics area.
— If the routine's return code indicates Success, then no status records are generated.

— If the routine's return code indicates Success with infor mation or Error, then one or more status records
are generated.

— If the routine's return code indicates No data found, then no status record is generated corresponding to
SQLSTATE value '02000' but there may be status records generated corresponding to SQLSTATE value
'02nnn', where 'nnn’ is an implementation-defined subclass value.

When Fetch or FetchScroll is invoked, the resulting rowset has one or more rows, and exceptions or warnings
are generated, then the corresponding records in the diagnostics area have the ROW_NUMBER field set to the
row number of the row in the rowset associated with the exceptions or warnings. If a status record does not
correspond to any row in the rowset, or the record is generated as a result of calling a routine other than Fetch
or FetchScroll, the ROW_NUMBER field is set to zero. The COLUMN_NUMBER field of the status record

Concepts 11

CD 9075-3:200x(E)
4.3 Diagnosticsareasin SQL/CLI

contains the column number (if any) to which this exception or warning condition applies. If the status record
does not apply to any column, then COLUMN_NUMBER is set to zero.

Status records in the diagnostics area are ordered by ROW_NUMBER. If multiple status records are generated
for the same ROW_NUMBER value, then the order in which the second and subsequent of those status records
appear is implementation-dependent. Which of those status records appears first is also implementation-
dependent, except that:

— Status records corresponding to transaction rollback have precedence over status records corresponding
to other exceptions, which in turn have precedence over status records corresponding to the completion
condition no data, which in turn have precedence over status records corresponding to the completion
condition warning.

— Apart from any status records corresponding to an implementation-specified no data, any status record
corresponding to an implementation-specified condition that duplicates, in whole or in part, a condition
defined in this part of ISO/IEC 9075 shall not be the first status record.

The routines GetDiagField and GetDiagRec retrieve information from a diagnostics area. The SQL/CLI appli-
cation identifies which diagnostics area is to be accessed by providing the handle of the relevant resource as
an input argument. The routines return a result code but do not modify the identified diagnostics area.

The Error routine also retrieves information from a diagnostics area. The Error routine retrieves the status
records in the identified diagnostics area one at a time but does not permit already processed status records to
be retrieved. Error returns a result code but does not modify the identified diagnostics area.

The RowCount routine retrieves the ROW_COUNT field from the diagnostics area for the specified statement
handle. RowCount returns a result code and may cause status records to be generated.

A CLI diagnostics area comprises the header fields specified under “Header fields” Table 1, “Header fields in
SQL/CLI diagnostics areas”, as well as zero (0) or more status records, each of which comprises the fields
specified under “Status record fields” Table 2, “Status record fields in SQL/CLI diagnostics areas”.

Table 1 — Header fieldsin SQL/CLI diagnostics areas

Field Datatype
DYNAMIC_FUNCTION CHARACTER VARYING (L1)
DYNAMIC_FUNCTION_CODE INTEGER

MORE INTEGER

NUMBER INTEGER

RETURNCODE SMALLINT

ROW_COUNT INTEGER
TRANSACTIONS_COMMITTED | INTEGER
TRANSACTIONS_ROLLED BACK | INTEGER

12 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.3 Diagnosticsareasin SQL/CLI

Field

Datatype

TRANSACTION_ACTIVE

INTEGER

Implementation-defined header field

Implementation-defined data type

T WhereL isan implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less than

254.

Table 2 — Statusrecord fieldsin SQL/CLI diagnostics areas

Field

Data type

CATALOG_NAME

CHARACTER VARYING (L)

CLASS_ORIGIN

CHARACTER VARYING (L1)

COLUMN_NAME

CHARACTER VARYING (L)'

COLUMN_NUMBER

INTEGER

CONDITION_IDENTIFIER

CHARACTER VARYING (L)'

CONDITION_NUMBER

INTEGER

CONNECTION_NAME

CHARACTER VARYING (L)'

CONSTRAINT_CATALOG

CHARACTER VARYING (L)'

CONSTRAINT_NAME

CHARACTER VARYING (L)'

CONSTRAINT_SCHEMA

CHARACTER VARYING (L)'

CURSOR_NAME

CHARACTER VARYING (L)'

MESSAGE_LENGTH

INTEGER

MESSAGE_OCTET_LENGTH

INTEGER

MESSAGE_TEXT

CHARACTER VARYING (L1)

NATIVE_CODE

INTEGER

PARAMETER_MODE

CHARACTER VARYING (L)'

PARAMETER_NAME

CHARACTER VARYING (L)'

Concepts 13

CD 9075-3:200x(E)
4.3 Diagnosticsareasin SQL/CLI

Field

Datatype

PARAMETER_ORDINAL_POSITION

INTEGER

ROUTINE_CATALOG

CHARACTER VARYING (L)'

ROUTINE_NAME

CHARACTER VARYING (L)'

ROUTINE_SCHEMA

CHARACTER VARYING (L)'

ROW_NUMBER

INTEGER

SCHEMA_NAME

CHARACTER VARYING (L)*

SERVER_NAME

CHARACTER VARYING (L)

SQLSTATE

CHARACTER (5)

SPECIFIC_NAME

CHARACTER VARYING (L)'

SUBCLASS_ORIGIN

CHARACTER VARYING (L1)

TABLE_NAME

CHARACTER VARYING (L)'

TRIGGER_CATALOG

CHARACTER VARYING (L)

TRIGGER_NAME

CHARACTER VARYING (L)'

TRIGGER_SCHEMA

CHARACTER VARYING (L)'

Implementation-defined status field

Implementation-defined data type

254,

T WhereL isan implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less than

All diagnostics area fields specified in other parts of ISO/IEC 9075 that are not included in this table are not

applicable to SQL/CLI.

4.3.1 Setting of ROW_NUMBER and COLUMN_NUMBER fields

Except where otherwise specified in this part of ISO/IEC 9075, the ROW_NUMBER and COLUMN_NUMBER

fields in a status record are always O (zero).

14 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.4 Miscellaneous char acteristics

4.4 Miscellaneous characteristics

441 Handles

The AllocHandle routine returns a handle that uniquely identifies the allocated resource. Although the data
type of a handle parameter is INTEGER, its value has no meaning in any other context and should not be used
as a numeric operand or modified in any way.

In general, if the related resource cannot be allocated, then a handle value of zero is returned. However, even
if a resource has been successfully allocated, processing of that resource can subsequently fail due to memory
constraints as follows:

— If additional memory is required but is not available, then an exception condition is raised: CLI-specific
condition — memory allocation error.

— If previously allocated memory cannot be accessed, then an exception condition is raised: CLI-specific
condition — memory management error.

NOTE 2 — No diagnostic information is generated in this case.

The validity of a handle in a compilation unit other than the one in which the identified resource was allocated
is implementation-defined.

Specifying (the address of) a valid handle as the output handle for an invocation of AllocHandle does not have
the effect of reinitializing the identified resource. Instead, a new resource is allocated and a new handle value
overwrites the old one.

4.4.2 Null terminated strings

An input character string provided by the SQL/CLI application may be terminated by the implementation-
defined null character that terminates C character strings. If this technique is used, the application may set the
associated length argument to either the length of the string excluding the null terminator or to -3, indicating
NULL TERMINATED.

If the NULL TERMINATION attribute for the SQL-environment is True, then all output character strings
returned by the SQL/CLI implementation are terminated by the implementation-defined null character that
terminates C character strings. If the NULL TERMINATION attribute is False, then output character strings
are not null terminated.

4.4.3 Null pointers

If the programming language of the invoking SQL/CLI application supports pointers, then the SQL/CLI
application may provide a zero-valued pointer, referred to as a null pointer, in the following circumstances:

— Inlieu of an output argument that is to receive the length of a returned character string. This indicates that
the SQL/CLI application wishes to prohibit the return of this information.

Concepts 15

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

— In lieu of other output arguments where specifically allowed by this part of ISO/IEC 9075. This indicates
that the SQL/CLI application wishes to prohibit the return of this information.

— Inlieu of input arguments where specifically allowed by this part of ISO/IEC 9075. The semantics of such
a specification depend on the context.

If the SQL/CLI application provides a null pointer in any other circumstances, then an exception condition is
raised: CLI-specific condition — invalid use of null pointer.

If the NULL TERMINATION attribute for the SQL-environment is False, then specifying a zero buffer size
for an output argument is equivalent to specifying a null pointer for that output argument.

4.4.4 Environment attributes

Environment attributes are associated with each allocated SQL-environment and affect the behavior of CLI
functions in that SQL-environment.

The GetEnvAttr routine enables the SQL/CLI application to determine the current value of a specific attribute.
For attributes that may be set by the user, the SetEnvAttr routine enables the SQL/CLI application to set the
value of a specific attribute. Attribute values may be set by the SQL/CLI application whenever there are no
SQL-connections allocated within the SQL-environment.

Table 16, “Codes used for environment attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each attribute its name, code value, data type, possible values,
and whether the attribute may be set using SetEnvAttr.

The NULL TERMINATION attribute determines whether output character strings are null terminated by the
SQL/CLI implementation. The attribute is set to True when an SQL-environment is allocated.

445 Connection attributes

Connection attributes are associated with each allocated SQL-connection and affect the behavior of CLI functions
operating in the context of that allocated SQL-connection.

The GetConnectAttr routine enables the SQL/CLI application to determine the current value of a specific con-
nection attribute. For connection attributes that may be set by the user, the SetConnectAttr routine enables the
SQL/CLI application to set the value of a specific connection attribute.

Table 17, “Codes used for connection attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each connection attribute its name, code value, data type,
possible values and whether the connection attribute may be set using SetConnectAttr.

The POPULATE IPD attribute determines whether the SQL/CLI implementation will populate the implemen-
tation parameter descriptor with an item descriptor area for each <dynamic parameter specification> when an
SQL-statement is prepared or executed immediately. The POPULATE IPD attribute is automatically set each
time an SQL-connection is established for the allocated SQL-connection.

The SAVEPOINT NAME connection attribute specifies the savepoint to be referenced in an invocation of the
EndTran routine that uses the SAVEPOINT NAME ROLLBACK or SAVEPOINT NAME RELEASE Com-

16 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.4 Miscellaneous char acteristics

pletionType, respectively. The SAVEPOINT NAME attribute is set to a zero-length string when the SQL-
connection is allocated.

446 Statement attributes

Statement attributes are associated with each allocated SQL-statement and affect the processing of SQL-state-
ments under that allocated SQL-statement.

The GetStmtAttr routine enables the SQL/CLI application to determine the current value of a specific statement
attribute. For statement attributes that may be set by the user, the SetStmtAttr routine enables the SQL/CLI
application to set the value of a specific statement attribute.

Table 18, “Codes used for statement attributes”, and Table 20, “Data types of attributes”, in Subclause 5.14,
“Other tables associated with CLI”, indicate for each statement attribute its name, code value, data type, possible
values, and whether the statement attribute may be set by using SetStmtAttr.

The APD HANDLE statement attribute is the value of the handle of the current application parameter
descriptor for the allocated SQL-statement. The statement attribute is set to the value of the handle of the
automatically allocated application parameter descriptor when the SQL-statement is allocated.

The ARD HANDLE statement attribute is the value of the handle of the current application row descriptor for
the allocated SQL-statement. The statement attribute is set to the value of the handle of the automatically allocated
application row descriptor when the SQL-statement is allocated.

The IPD HANDLE statement attribute is the value of the handle of the implementation parameter descriptor
associated with the allocated SQL-statement. The statement attribute is set to the value of the handle of the
automatically allocated implementation parameter descriptor when the SQL-statement is allocated.

The IRD HANDLE statement attribute is the value of the handle of the implementation row descriptor associated
with the allocated SQL-statement. The statement attribute is set to the value of the handle of the automatically
allocated implementation row descriptor when the SQL-statement is allocated.

The CURSOR SCROLLABLE statement attribute determines the scrollability implicitly declared when Execute
or ExecDirect are invoked. The statement attribute is set to NONSCROLLABLE when the SQL-statement is
allocated. The CURSOR SENSITIVITY statement attribute determines the sensitivity to changes of the cursor
implicitly declared when Execute or ExecDirect are invoked. The statement attribute is set to ASENSITIVE
when the SQL-statement is allocated.

The CURSOR HOLDABLE statement attribute determines the holdability of the cursor implicitly declared
when Execute or ExecDirect are invoked. The statement attribute is set to HOLDABLE or NONHOLDABLE
when the statement is allocated, depending on the values of the CURSOR COMMIT BEHAVIOR item used
by the Getlnfo routine.

The statement attribute CURRENT OF POSITION identifies the row in the rowset to which a positioned update
or delete operation applies. This is set to 1 (one) when an SQL-statement is initially allocated. It is reset to 1
(one) whenever Fetch or FetchScroll are successfully executed.

The NEST DESCRIPTOR statement attribute determines whether nested descriptor items are permitted in a
CLI descriptor. Nested descriptor items are used to describe ROW, ARRAY, and MULTISET data types. The
statement attribute is set to FALSE when the SQL-statement is allocated.

Concepts 17

CD 9075-3:200x(E)
4.4 Miscellaneous characteristics

447 CLI descriptor areas

A CLI descriptor area provides an interface for a description of <dynamic parameter specification>s, <dynamic
parameter specification> values, result columns of <dynamic select statement>s and <dynamic single row select
statement>s, or <target specification>s for the result columns.

Each descriptor area comprises header fields and zero or more item descriptor areas. The header fields are
specified in Table 6, “Fields in SQL/CLI row and parameter descriptor areas”. The header fields include a
COUNT field that indicates the number of item descriptor areas and an ALLOC_TYPE field that indicates
whether the CLI descriptor area was allocated by the user or automatically allocated by the SQL/CLI implemen-
tation.

The header fields include ARRAY _SIZE, ARRAY_STATUS POINTER, and ROWS PROCESSED_ POINTER.
These three fields are used to support the fetching of multiple rows with one invocation of Fetch or FetchScroll.

Each CLI item descriptor area consists of the fields specified following “Status record fields” in Table 6, “Fields
in SQL/CLI row and parameter descriptor areas”.

The CLI descriptor areas for the four interface types are referred to as an implementation parameter descriptor
(IPD), an application parameter descriptor (APD), an implementation row descriptor (IRD), and an application
row descriptor (ARD), respectively. IPDs and IRDs are collectively known as implementation descriptor areas;
APDs and ARD:s are collectively known as application descriptor areas.

When an SQL-statement is allocated, a CLI descriptor area of each type is automatically allocated by the
SQL/CLI implementation. The ALLOC_TYPE fields for these CLI descriptor areas are set to indicate
AUTOMATIC. A CLI descriptor area allocated by the user has its ALLOC_TYPE field set to indicate USER,
and can only be used as an APD or ARD. The handle values of the IPD, IRD, current APD, and current ARD
are attributes of the allocated SQL-statement. The SQL/CLI application can determine the current values of
these attributes by using the routine GetStmtAttr. The current APD and ARD are initially the automatically-
allocated APD and ARD, respectively, but can subsequently be changed by changing the corresponding attribute
value using the routine SetStmtAttr.

The routines GetDescField and GetDescRec enable information to be retrieved from any CLI descriptor area.
The routines SetDescField and SetDescRec enable information to be set in any CLI descriptor area except an
IRD. The routine BindCol implicitly sets information in the current ARD. The routine BindParameter implicitly
sets information in the current APD and the current IPD. The CopyDesc routine enables the contents of any
CLI descriptor area to be copied to any CLI descriptor area except an IRD.

NOTE 3 — Although there is no need to set a DATA_POINTER field in the IPD to align with the consistency check that applies in the
case of an APD or ARD, setting this field causes the item descriptor area to be validated.

4.4.8 Obtaining diagnostics during multi-row fetch

When Fetch or FetchScroll is used to fetch a rowset, exceptions or warnings may be raised during the retrieval
of one or more rows in the rowset. The status of each row (that is, information about whether that row in the
rowset was successfully retrieved or not) is available in the array addressed by the ARRAY_STATUS_POINTER
field of the applicable IRD. The cardinality of this array is the same as the ARRAY _SIZE field of the corre-
sponding ARD. For each row in the rowset, the corresponding element of this array has one of the following
values:

— A value of 0 (zero) indicates Row success, meaning that the row was fetched successfully.

18 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
4.4 Miscellaneous char acteristics

— A value of 6 indicates Row successwith information, meaning that the row was fetched successfully, but
a completion condition was raised: warning.

— A value of 3 indicates No row, meaning that there is no row at this position in the rowset. This condition
occurs when a partial rowset is retrieved because the result set ended.

— A value of 5 indicates Row error, meaning that the row was not fetched successfully and an exception
condition was raised.

Each Row success with information or Row Error generates one or more status records in the diagnostics
area. The ROW_NUMBER field for each status record has the value of the row position within the rowset to
which this status record corresponds.

4.5 Client-server operation

This Subclause maodifies Subclause 4.39, “Client-server operation™, in |SO/IEC 9075-2.

|Insert this paragraph | If the execution of a CLI routine causes the implicit or explicit execution of an <SQL
procedure statement> by an SQL-server, diagnostic information is passed in an implementation-dependent
manner to the SQL-client and then into the appropriate diagnostics area. The effect on diagnostic information
of incompatibilities between the character repertoires supported by the SQL-client and the SQL-server is
implementation-dependent.

Concepts 19

CD 9075-3: 200x(E)

(Blank page)

20 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

5 Call-Level Interface specifications

This Clause is modified by Clause 19, “Call-Level Interface specifications”, in | SO/IEC 9075-9.

51 <CLI routine>
This Subclause is modified by Subclause 19.1, ““<CLI routine>"", in ISO/IEC 9075-9.

Function

Describe SQL/CLI routines in a generic fashion.

Format

<CLI routine> ::=
<CLI routine name> <CLI parameter list> [<CLIl returns clause>]

<CLI routine name> ::=
<CLI name prefix><CLl generic name>

<CLI name prefix> ::=
<CLl by-reference prefix>
| <CL1 by-value prefix>

<CLI by-reference prefix> ::=
SQLR

<CLIl by-value prefix> ::=
SQL

<CLI generic name> ::=
AllocConnect
AllocEnv
AllocHandle
AllocStmt
BindCol
BindParameter
Cancel
CloseCursor
ColAttribute
ColumnPrivileges
Columns

Connect

CopyDesc
DataSources
DescribeCol
Disconnect

Call-Level Interface specifications 21

CD 9075-3:200x(E)
5.1 <CLI routine>

EndTran

Error
ExecDirect
Execute

Fetch
FetchScroll
ForeignKeys
FreeConnect
FreeEnv
FreeHandle
FreeStmt
GetConnectAttr
GetCursorName
GetData
GetDescField
GetDescRec
GetDiagField
GetDiagRec
GetEnvAttr
GetFeaturelnfo
GetFunctions
GetlInfo
GetLength
GetParamData
GetPosition
GetSessionlinfo
GetStmtAttr
GetSubString
GetTypelnfo
MoreResults
NextResult
NumResultCols
ParamData
Prepare
PrimaryKeys
PutData
RowCount
SetConnectAttr
SetCursorName
SetDescField
SetDescRec
SetEnvAttr
SetStmtAttr
SpecialColumns
StartTran
TablePrivileges
Tables
<implementation-defined CLI generic name>

<CLI parameter list> ::=
<left paren> <CLIl parameter declaration>
[{ <comma> <CLI parameter declaration> }...] <right paren>

<CLl parameter declaration> ::=
<CLl parameter name> <CLl parameter mode> <CLl parameter data type>

<CLl parameter name> :-:=
I'l See the individual CLI routine definitions

22 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

<CLl parameter mode> ::=

IN

ouT
DEFIN
DEFOUT
DEF

<CLI parameter data type> ::=

INTEGER

SMALLINT

ANY

CHARACTER <left paren> <length> <right paren>

<CLI returns clause> ::=
RETURNS SMALLINT

<implementation-defined CLI generic name> ::=

See the Syntax Rul es

Syntax Rules

1)

2)

3)
4)

5)

6)

<CLI routine> is a pre-defined routine written in a programming language that is invoked by a compilation
unit of the same programming language. Let HL be that programming language.

<CLI routine> that contains a <CLI returns clause> is called a CLI function. A <CLI routine> that does
not contain a <CLI returns clause> is called a CLI procedure.

There shall be no <separator> between the <CLI name prefix> and the <CLI generic name>.

For each CLI function CF, there is a corresponding CLI procedure CP, with the same <CLI routine name>.
The <CLI parameter list> for CP is the same as the <CLI parameter list> for CF but with the following
additional <CLI parameter declaration>:

ReturnCode OUT SMALLINT

HL shall support either the invocation of CF or the invocation of CP. It is implementation-defined which
is supported.

Case:

a) If<CLI parameter mode> is IN, then the parameter is an input parameter. The value of an input argument
is established when a CLI routine is invoked.

b) If <CLI parameter mode> is OUT, then the parameter is an output parameter. The value of an output
argument is established when a CLI routine is executed.

c) If <CLI parameter mode> is DEFIN, then the parameter is a deferred input parameter. The value of a
deferred input argument for a CLI routine R is not established when R is invoked, but subsequently
during the execution of a related CLI routine.

d) If <CLI parameter mode> is DEFOUT, then the parameter is a deferred output parameter. The value
of a deferred output argument for a CLI routine R is not established by the execution of R but subse-
guently by the execution of a related CL1I routine.

Call-Level Interface specifications 23

CD 9075-3:200x(E)
5.1 <CLI routine>

e) If <CLI parameter mode> is DEF, then the parameter is a deferred parameter. The value of a deferred
argument for a CLI routine Ris not established by the execution of R but subsequently by the execution
of a related CLI routine.

7) The value of an output, deferred output, deferred input, or deferred parameter is an address. It is either a
non-pointer host variable passed by reference or a pointer host variable passed by value.

8) A by-value version of a CLI routine is a version that expects each of its non-character input parameters to
be provided as actual values. A by-reference version of a CLI routine is a version that expects each of its
input parameters to be provided as an address. By-value and by-reference versions of the CLI routines shall
be supported according to Table 3, “Supported calling conventions of SQL/CLI routines by language”.

Table 3— Supported calling conventions of SQL/CLI routines by language

Language By-value By-reference

Ada (1SO 8652) Optional Required

C (ISO/IEC 9899) Required Optional

COBOL (ISO 1989) Optional Required

Fortran (ISO/IEC 1539) Not supported | Required

M (ISO/IEC 11756) Optional Required

Pascal (ISO/IEC 7185 and ISO/IEC | Optional Required

10206)

PL/I (1ISO 6160) Optional Required

9) Ifa<CLIroutine> is a by-reference routine, then its <CLI routine name> shall contain a <CLI by-reference

prefix>. Otherwise, its <CLI routine name> shall contain a <CLI by-value prefix>.

10) The <implementation-defined CLI generic name> for an implementation-defined CLI function shall be

different from the <CLI generic name> of any other CLI function. The <implementation-defined CLI
generic name> for an implementation-defined CLI procedure shall be different from the <CLI generic
name> of any other CLI procedure.

11) Any <CLI routine name> that cannot be used by an implementation because of its length or because it is

made identical to some other <CLI routine name> by truncation is effectively replaced with an abbreviated
name according to the following rules:

a) Any <CLI by-value prefix> remains unchanged.
b) Any <CLI by-reference prefix> is replaced by SQR.

c) The <CLI generic name> is replaced by an abbreviated version according to Table 4, “Abbreviated
SQL/CLI generic names”.

24 Call-Level Interface (SQL/CLI)

Table 4 — Abbreviated SQL/CLI generic names

CD 9075-3:200x(E)
5.1 <CLI routine>

Generic Name Abbreviation
AllocConnect AC
AllocEnv AE
AllocHandle AH
AllocStmt AS
BindCol BC
BindParameter BP
Cancel CAN
CloseCursor CC
ColAttribute (6{0)
ColumnPrivileges CP
Columns COoL
Connect CON
CopyDesc CD
DataSources DS
DescribeCol DC
Disconnect DIS
EndTran ET
Error ER
ExecDirect ED
Execute EX
Fetch FT
FetchScroll FTS
ForeignKeys FK
FreeConnect FC

Call-Level Interface specifications 25

CD 9075-3:200x(E)
5.1 <CLI routine>

Generic Name Abbreviation
FreeEnv FE
FreeHandle FH
FreeStmt FS
GetConnectAttr GCA
GetCursorName GCN
GetData GDA
GetDescField GDF
GetDescRec GDR
GetDiagField GXF
GetDiagRec GXR
GetEnvAttr GEA
GetFeaturelnfo GFI
GetFunctions GFU
GetInfo Gl
GetLength GLN
GetParamData GPD
GetPosition GPO
GetSessionInfo GSI
GetStmtAttr GSA
GetSubString GSB
GetTypelnfo GTI
MoreResults MR
NextResult NR
NumResultCols NRC
ParamData PRD

26 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

Generic Name Abbreviation
Prepare PR
PrimaryKeys PK

PutData PTD
RowCount RC
SetConnectAttr SCA
SetCursorName SCN
SetDescField SDF
SetDescRec SDR
SetEnvAttr SEA
SetStmtAttr SSA
SpecialColumns SC

StartTran STN
TablePrivileges TP

Tables TAB
Implementation- Implementation-defined abbreviation
defined CLI routine

12) Let CRbe a <CLI routine> and let RN be its <CLI routine name>. Let RNU be the value of UPPER(RN).
Case:
a) If HL supports case sensitive routine names, then the name used for the invocation of CR shall be RN.

b) If HL does not support <simple Latin lower case letter>s, then the name used for the invocation of CR
shall be RNU.

c) If HL does not support case sensitive routine names, then the name used for the invocation of CR shall
be RN or RNU.

13) Let operative data type correspondence table be the data type correspondence table for HL as specified in
Subclause 5.15, “SQL/CLI data type correspondences”. Refer to the two columns of the operative data
type correspondence table as the “SQL data type column” and the “host data type column”.

14) LetTI, TS TC, and TV be the types listed in the host data type column for the rows that contains INTEGER,
SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively, in the SQL data type
column.

a) If TSis “None”, then let TS=TI.

Call-Level Interface specifications 27

CD 9075-3:200x(E)
5.1 <CLI routine>

b) If TCis “None”, then let TC=TV.
c) For each parameter P,
Case:

i) If the CLI parameter data type is INTEGER, then the type of the corresponding argument shall
be TI.

i) If the CLI parameter data type is SMALLINT, then the type of the corresponding argument shall
be TS

iii) Ifthe CLI parameter data type is CHARACTER(L), then the type of the corresponding argument
shall be TC.

iv) If the CLI parameter data type is ANY, then
Case:
1) If HL is C, then the type of the corresponding argument shall be “voi d *”.

2) Otherwise, the type of the corresponding argument shall be any type (other than “None”)
listed in the host data type column.

d) If the CLI routine is a CLI function, then the type of the returned value is TS

Access Rules

None.

General Rules

1)

The rules for invocation of a <CLI routine> are specified in Subclause 5.2, “<CLI routine> invocation”.

Conformance Rules

1)

2)

3)

4)

5)

6)

28

Without Feature C001, “CLI routine invocation in Ada”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Ada.

Without Feature C002, “CLI routine invocation in C”, a conforming SQL/CLI application shall not contain
an invocation of a <CLI routine> written in C.

Without Feature C003, “CLI routine invocation in COBOL”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in COBOL.

Without Feature C004, “CLI routine invocation in Fortran”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Fortran.

Without Feature C005, “CLlI routine invocation in MUMPS”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in M.

Without Feature C006, “CLI routine invocation in Pascal”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Pascal.

Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.1 <CLI routine>

7) Without Feature C007, “CLI routine invocation in PL/I””, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in PL/I.

Call-Level Interface specifications 29

CD 9075-3: 200x(E)

52

5.2

<CLI routine> invocation

<CLI routine> invocation

Function

Specify the rules for invocation of a <CLI routine>.

Syntax Rules

1)
2)

3)

4)

Let HL be the programming language of the invoking host program.

A CLI function or CLI procedure is invoked by the HL mechanism for invoking functions or procedures,
respectively.

Let RNM be the <CL1I routine name> of the <CLI routine> invoked by the host program and let RN be the
SQL/CLI routine identified by RNM. The number of arguments provided in the invocation shall be the
same as the number of <CLI parameter declaration>s for RN.

Let DA be the data type of the i-th argument in the invocation and let DP be the <CLI parameter data type>
of the i-th <CLI parameter declaration> of RN. DA shall be the HL equivalent of DP as specified by the
rules of Subclause 5.1, “<CLI routine>".

General Rules

1)

2)
3)

30

If the value of any input argument provided by the host program is not a value of the data type of the
parameter, or if the value of any output argument resulting from the execution of the <CLI routine> is not
a value supported by the SQL/CL1 application for that parameter, then the effect is implementation-defined.

Let GRN be the <CLI generic name> of RN.

When the <CLI routine> is called by the SQL/CLI application:
a) The values of all input arguments to RN are established.

b) Case:

i) If RN is a CLI routine with a statement handle as an input parameter, RN has no accompanying
handle type parameter, and GRN is not Error, then:

1) If the statement handle does not identify an allocated SQL-statement, then an exception
condition is raised: CLI-specific condition — invalid handle. Otherwise, let Sbe the allocated
SQL-statement identified by the statement handle.

2) If GRN is not Cancel, then the diagnostics area associated with Sis emptied.
3) Let C be the allocated SQL-connection with which Sis associated.

4) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist. Otherwise, let EC be the established
SQL-connection associated with C.

5) If ECis not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.2 <CLI routine> invocation

6) If GRN is neither Cancel nor ParamData nor PutData and there is a deferred parameter
number associated with S then an exception condition is raised: CLI-specific condition —
function sequence error.

7) RNis invoked.

i) If RN is a CLI routine with a descriptor handle as an input parameter and RN has no accompa-
nying handle type parameter and GRN is not CopyDesc, then:

1) Ifthe descriptor handle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition — invalid handle. Otherwise, let D be the allocated
CLI descriptor area identified by the descriptor handle.

2) The diagnostics area associated with D is emptied.
3) Let C be the allocated SQL-connection with which D is associated.

4) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception — connection does not exist. Otherwise, let EC be the established
SQL-connection associated with C.

5) If ECis not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

6) RN s invoked.

iii) Otherwise, RN is invoked.

4) Case:

5)

a)

If RN is a CLI function, then:
i) The values of all output arguments are established.

i) Let RC be the return value.

b) If RNisa CLI procedure, then:
i) The values of all output arguments are established except for the argument associated with the
ReturnCode parameter.
i) Let RC be the argument associated with the ReturnCode parameter.
Case:
a) If RN did not complete execution because it requires more input data, then:
i) RC is set to indicate Data needed.
i) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.
b) If RN executed successfully, then:

i) Either a completion condition is raised: successful completion, or a completion condition is
raised: warning, or a completion condition is raised: no data.

i) Case:

1) Ifacompletion condition is raised: successful completion, then RC is set to indicate Success.

Call-Level Interface specifications 31

CD 9075-3:200x(E)
5.2 <CLI routine> invocation

2) If a completion condition is raised: warning, then RC is set to indicate Successwith infor-
mation.

3) If acompletion condition is raised: no data, then RC is set to indicate No data found.
c) If RN did not execute successfully, then:
i) All changes made to SQL-data or schemas by the execution of RN are canceled.

i) One or more exception conditions are raised as determined by the General Rules of this and
other Subclauses of this part of ISO/IEC 9075 or by implementation-defined rules.

iii) Case:

1) If an exception condition is raised: CLI-specific condition — invalid handle, then RC is set
to indicate Invalid handle.

2) Otherwise, RC is set to indicate Error.
6) Case:

a) If GRN is neither Error nor GetDiagField nor GetDiagRec, and RC indicates neither Invalid handle
nor Data needed, then diagnostic information resulting from the execution of RN is placed into the
appropriate diagnostics area as specified in Subclause 4.2, “Return codes”, and Subclause 4.3, “Diag-
nostics areas in SQL/CLI”.

b) Otherwise, no diagnostics area is updated.

32 Call-Leve Interface (SQL/CLI)

5.3

CD 9075-3:200x(E)
5.3 Implicit set connection

I mplicit set connection

Function

Specify the rules for an implicit SET CONNECTION statement.

General Rules

1)
2)

3)
4)

5)

6)

Let DC be the dormant SQL-connection specified in an application of this Subclause.

If an SQL-transaction is active for the current SQL-connection and the SQL-implementation does not
support transactions that affect more than one SQL-server, then an exception condition is raised: feature
not supported — multiple server transactions.

If DC cannot be selected, then an exception condition is raised: connection exception — connection failure.

The current SQL-connection CC and current SQL-session become a dormant SQL-connection and a dormant
SQL-session, respectively. The SQL-session context for CC is preserved and is not affected in any way by
operations performed over the selected SQL-connection.

NOTE 4 — The SQL-session context is defined in Subclause 4.37, “SQL-sessions”, in ISO/IEC 9075-2.

DC becomes the current SQL-connection and the SQL-session associated with DC becomes the current
QL-session. The SQL-session context is restored to the same state as at the time DC became dormant.

NOTE 5 — The SQL-session context information is defined in Subclause 4.37, “SQL-sessions”, in ISO/IEC 9075-2.

The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set to that
of the current SQL-connection.

Call-Level Interface specifications 33

CD 9075-3: 200x(E)

54

5.4

Implicit cursor

Implicit cursor

Function

Specify the rules for an implicit DECLARE CURSOR and OPEN statement.

General Rules

1)

2)

3)

4)

5)

6)

7)

8)

34

Let SSand ASbhe a SELECT SOURCE and ALLOCATED STATEMENT specified in an application of this
Subclause.

If there is no cursor associated with AS, then a cursor is associated with ASand the cursor name associated
with ASbecomes the name of the cursor.

The General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”, are applied
with OPEN as TYPE, SS as SOURCE, and AS as ALLOCATED STATEMENT.

If the value of the CURSOR SCROLLABLE attribute of ASis SCROLLABLE, then let CT be 'SCROLL";
otherwise, let CT be an empty string.

Case:

a) If the value of the CURSOR SENSITIVITY attribute of ASis INSENSITIVE, then let CSbe 'INSEN-
SITIVE.

b) If the value of the CURSOR SENSITIVITY attribute of ASis SENSITIVE, then let CSbe 'SENSITIVE'".
c) Otherwise, let CShe 'ASENSITIVE'

If the value of the CURSOR HOLDABLE attribute of ASis HOLDABLE, then let CH be 'WITH HOLD';
otherwise, let CH be an empty string.

Let CN be the name of the cursor associated with ASand let CR be the following <declare cursor>:
DECLARE CN CS CT CURSOR CH FOR SS

Cursor CN is opened in the following steps:
a) A copy of SSis effectively created in which:

i) Each <dynamic parameter specification> is replaced by the value of the corresponding dynamic
parameter.

i) Each <value specification> generally contained in SSthat is CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_PATH, CURRENT _DEFAULT TRANSFORM_GROUP, or
CURRENT_TRANSFORM_GROUP_FOR_TYPE <path-resolved user-defined type name> is
replaced by the value resulting from evaluation of CURRENT_USER, CURRENT_ROLE,
SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CURRENT_SCHEMA, CUR-
RENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or CURRENT_TRANS-
FORM_GROUP_FOR_TYPE <path-resolved user-defined type name>, respectively, with all
such evaluations effectively done at the same instant in time.

Call-Level Interface (SQL/CLI)

9)

CD 9075-3:200x(E)
5.4 Implicit cursor

iii) Each <datetime value function> generally contained in SSis replaced by the value resulting
from evaluation of that <datetime value function>, with all such evaluations effectively done at
the same instant in time.

b) Let T be the table specified by the copy of SS

c) A table descriptor for T is effectively created.

d) The General Rules of Subclause 14.1, “<declare cursor>", in ISO/IEC 9075-2 are applied to CR.
e) Case:

i) If CR specifies INSENSITIVE, then a copy of T is effectively created and cursor CN is placed
in the open state and its position is before the first row of the copy of T.

i) Otherwise, cursor CN is placed in the open state and its position is before the first row of T.

If CRspecifies INSENSITIVE, and the SQL-implementation is unable to guarantee that significant changes
will be invisible through CRduring the SQL-transaction in which CRis opened and every subsequent SQL-
transaction during which it may be held open, then an exception condition is raised: cursor sensitivity
exception — request rejected.

10) If CR specifies SENSITIVE, and the SQL-implementation is unable to guarantee that significant changes

will be visible through CR during the SQL-transaction in which CRis opened, then an exception condition
is raised: cursor sensitivity exception — request rejected.

NOTE 6 — The visibility of significant changes through a sensitive holdable cursor during a subsequent SQL-transaction is
implementation-defined.

11) Whether an implementation is able to disallow significant changes that would not be visible through a

currently open cursor is implementation-defined.

Call-Level Interface specifications 35

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

55 Implicit DESCRIBE USING clause
This Subclause is modified by Subclause 19.2, “Implicit DESCRIBE USING clause™, in | SO/IEC 9075-9.

Function

Specify the rules for an implicit DESCRIBE USING clause.

General Rules

1) Let Sand ASbhe a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclause.

2) Let IRD and IPD be the implementation row descriptor and implementation parameter descriptor, respec-
tively, associated with AS

3) Let HL be the programming language of the invoking host program.

4) The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE in IRD and IPD are respectively
a character string representation of the prepared statement and a numeric code that identifies the type of
the prepared statement.

5) A representation of the column descriptors of the <select list> columns for the prepared statement is stored
in IRD as follows:

a) Case:
i) If there is a select source associated with AS then:
1) Let TBL be the table defined by Sand let D be the degree of TBL.
Case:

A) If the value of the statement attribute NEST DESCRIPTOR is True, then let NS,

1 (one) <i < D, be the number of subordinate descriptors of the descriptor for the i-th
column of T.

B) Otherwise, let NS, 1 (one) <i <D, be 0 (zero).
2) TOP_LEVEL_COUNT issetto D. If D is O (zero), then let TD be 0 (zero); otherwise, let
TD be D + 2, (NS). COUNT is set to TD.
3) Let 9 be the collection of <select list> columns of TBL.
4) Case:
A) If some subset of S is the primary key of TBL, then KEY_TYPE is set to 1 (one).
B) If some subset of S is the preferred key of TBL, then KEY_TYPE is set to 2.
C) Otherwise, KEY_TYPE is set to O (zero).

i) Otherwise:

36 Call-Level Interface (SQL/CLI)

b)

c)

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

1) Let D be 0 (zero). Let TD be 0 (zero).
2) KEY_TYPE is set to 0 (zero).

If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains the descriptor of the j-th column of TBL such that:

i)
i)
i)

The descriptor for the first such column is assigned to the first descriptor area.

The descriptor for the j+1-th column is assigned to the i+NS+1-th item descriptor area.

If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly ordered
subordinate descriptors for the j-th column are assigned to contiguous item descriptor areas
starting at the i+1-th item descriptor area.

The descriptor of a column consists of values for LEVEL, TYPE, NULLABLE, NAME, UNNAMED,
KEY_MEMBER, and other fields depending on the value of TYPE as described below. Those fields
and fields that are not applicable for a particular value of TYPE are set to implementation-dependent
values. The DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields
are not relevant in this case.

If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to O (zero).

TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, indicating the data type of the column or subordinate descriptor.

Case:
1) If the value of LEVEL is 0 (zero), then:

A) If the resulting column is possibly nullable, then NULLABLE is set to 1 (one); otherwise
NULLABLE is set to 0 (zero).

B) If the column name is implementation-dependent, then NAME is set to the implementa-
tion-dependent name of the column and UNNAMED is set to 1 (one); otherwise, NAME
is set to the <derived column> name for the column and UNNAMED is set to O (zero).

C) Case:

)] If a <select list> column C is a member of a primary or preferred key of TBL,
then KEY_MEMBER is set to 1 (one).

I1) Otherwise, KEY_MEMBER is set to 0 (zero).
2) Otherwise:
A) NULLABLE is setto 1 (one).
B) Case:
1) If the item descriptor area describes a field of a row type, then
Case:

1) If the name of the field is implementation-dependent, then NAME is set to
the implementation-dependent name of the field and UNNAMED is set to 1
(one).

Call-Level Interface specifications 37

CD 9075-3: 200x(E)

5.5 Implicit DESCRIBE USING clause

2) Otherwise, NAME is set to the name of the field and UNNAMED is set to
0 (zero).

I1) Otherwise, UNNAMED is setto 1 (one) and NAME is set to an implementation-
dependent value.

C) KEY_MEMBER is set to 0 (zero).

iv) Case:

1)

2)

3)

4)

5)

6)

7)

8)

If TYPE indicates a <character string type>, then LENGTH is set to the length or maximum
length in characters of the character string. OCTET_LENGTH is set to the maximum possible
length in octets of the character string. If HL is C, then the lengths specified in LENGTH
and OCTET_LENGTH do not include the implementation-defined null character that termi-
nates a C character string. CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
and CHARACTER_SET_NAME are set to the <character set name> of the character string's
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string's collation.

If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, to indicate the specific datetime
data type, and PRECISION is set to the <time precision> or <timestamp precision> as
applicable.

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the interval
type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10, “Codes
associated with <interval qualifier> in SQL/CLI”, to indicate the specific <interval qualifier>,
DATETIME_INTERVAL_PRECISION is set to the <interval leading field precision>, and
PRECISION is set to the <interval fractional seconds precision>, if applicable.

If TYPE indicates REF, then LENGTH and OCTET _LENGTH are set to the length in octets
of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined type
name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to the
CURRENT_TRANSFORM_GROUP_FOR_TYPE for the user-defined type.
USER_DEFINED_TYPE_CODE is set to a code as specified in Table 12, “Codes associated
with user-defined types in SQL/CLI”, to indicate the category of the user-defined type.

38 Call-Leve Interface (SQL/CLI)

CD 9075-3: 200x(E)
5.5 Implicit DESCRIBE USING clause
9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of the
array type.

6) Let C be the allocated SQL-connection with which ASis associated.
If POPULATE IPD for C is False, then no further rules of this Subclause are applied.

7)
8)

If POPULATE IPD for C is True, then a descriptor for the <dynamic parameter specification>s for the
prepared statement is stored in IPD as follows:

a)

b)

d)

Let D be the number of <dynamic parameter specification>s in S

Case:

)] If the value of the statement attribute NEST DESCRIPTOR is True, then let NS, 1 (one) <i <D,
be the number of subordinate descriptors of the descriptor for the i-th input dynamic parameter.

i) Otherwise, let NS, 1 (one) <i < D, be 0 (zero).

TOP_LEVEL_COUNT issetto D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let TD be D + Ziil
(NS). COUNT is set to TD.

NOTE 7 — The KEY_TYPE field is not relevant in this case.

If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains a descriptor of the j-th <dynamic parameter specification>
such that:

)] The descriptor for the first such <dynamic parameter specification> is assigned to the first
descriptor area.

i) The descriptor for the j+1-th <dynamic parameter specification> is assigned to the i+NS+1-th
item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly ordered
subordinate descriptors for the j-th <dynamic parameter specification> are assigned to contiguous
item descriptor areas starting at the i+1-th item descriptor area.

The descriptor of a <dynamic parameter specification> consists of values for LEVEL, TYPE, NUL-
LABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION,
PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPE-
CIFIC_NAME, and other fields depending on the value of TYPE as described below. Those fields and
fields that are not applicable for a particular value of TYPE are set to implementation-dependent values.
The DATA_POINTER, INDICATOR_POINTER, OCTET_LENGTH_POINTER,
RETURNED_CARDINALITY_POINTER, and KEY_MEMBER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to O (zero).

i) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, indicating the data type of the <dynamic parameter specification> or subordinate
descriptor.

iii) NULLABLE is setto 1 (one).

Call-Level Interface specifications 39

CD 9075-3: 200x(E)

5.5 Implicit DESCRIBE USING clause

NOTE 8 — This indicates that the <dynamic parameter specification> can have the null value.

iv) KEY_MEMBER is set to 0 (zero).

V) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.

vi) Case:

1)

2)

3)

4)

5)

6)

7)

8)

9)
10)

If TYPE indicates a <character string type>, then LENGTH is set to the length or maximum
length in characters of the character string. OCTET_LENGTH is set to the maximum possible
length in octets of the character string. If HL is C, then the lengths specified in LENGTH
and OCTET_LENGTH do not include the implementation-defined null character that termi-
nates a C character string. CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
and CHARACTER_SET_NAME are set to the <character set name> of the character string's
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string's collation.

If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, to indicate the specific datetime
data type, and PRECISION is set to the <time precision> or <timestamp precision> as
applicable.

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the interval
type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10, “Codes
associated with <interval qualifier> in SQL/CLI”, to indicate the specific <interval qualifier>,
DATETIME_INTERVAL_PRECISION is set to the <interval leading field precision>, and
PRECISION is set to the <interval fractional seconds precision>, if applicable.

If TYPE indicates REF, then LENGTH and OCTET _LENGTH are set to the length in octets
of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined type
name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to the
CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type name>.

If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of the
array type.

40 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.5 Implicit DESCRIBE USING clause

9) If LEVEL is 0 (zero) and the prepared statement being described is a <call statement>, then:

a)
b)

c)

d)

Let SR be the subject routine for the <routine invocation> of the <call statement>.

Let Dy be the x-th <dynamic parameter specification> simply contained in an SQL argument A, of the
<call statement>.

Let Py be the y-th SQL parameter of SR

NOTE 9 — A P whose <SQL parameter mode> is IN can be a <value expression> that contains zero, one, or more <dynamic
parameter specification>s. Thus:

— Every Dy maps to one and only one Py
— Several Dy instances can map to the same Py,.
— There can be Py instances that have no Dy instances that map to them.

The PARAMETER_MODE value in the descriptor for each Dy is set to the value from Table 11, “Codes
associated with <parameter mode> in SQL/CLI”, that indicates the <SQL parameter mode> of Py.

The PARAMETER_ORDINAL_POSITION value in the descriptor for each Dy is set to the ordinal
position of Py.

The PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, and PARAME-
TER_SPECIFIC_NAME values in the descriptor for each Dy is set to the values that identify the catalog,

schema, and specific name of SR.

Call-Level Interface specifications 41

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

56 Implicit EXECUTE USING and OPEN USING clauses

Function

Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

General Rules

1) LetT, S and AShbe the TYPE, SOURCE, and ALLOCATED STATEMENT specified in the rules of this
Subclause.

2) LetIPD, ARD, and APD be the current implementation parameter descriptor, current application row
descriptor, and current application parameter descriptor, respectively, for AS

3) Let C be the allocated SQL-connection with which Sis associated.

4) 1PD and APD describe the <dynamic parameter specification>s and <dynamic parameter specification>
values, respectively, for the statement being executed. Let D be the number of <dynamic parameter speci-
fication>s in S Let NAPD be the value of COUNT for APD and let NIPD be the value of COUNT for IPD.

a) If NAPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

b) If NIPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

c) IfNIPD is less than D, then an exception condition is raised: dynamic SQL error — using clause does
not match dynamic parameter specifications.

d) Let NIDAL be the number of item descriptor areas in IPD for which LEVEL is O (zero). If NIDAL is
greater than D, then it is implementation-defined whether an exception condition is raised: dynamic
L error — using clause does not match dynamic parameter specifications.

e) Ifthe first NIPD item descriptor areas of IPD are not valid as specified in Subclause 5.13, “Description
of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause
does not match dynamic parameter specifications.

f) Let AD be the minimum of NAPD and NIPD.
g) For each of the first AD item descriptor areas of APD, if TYPE indicates DEFAULT, then:

i) Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the corresponding item descriptor area of 1PD.

i) The data type, precision, and scale of the described <dynamic parameter specification> value
(or part thereof, if the item descriptor area is a subordinate descriptor) are set to TP, P, and SC,
respectively, for the purposes of this invocation only.

h) If the first AD item descriptor areas of APD are not valid as specified in Subclause 5.13, “Description
of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause
does not match dynamic parameter specifications.

i) For the first AD item descriptor areas in APD:

42 Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D, then
an exception condition is raised: dynamic SQL error — using clause does not match dynamic
parameter specifications.

If all of the following are true, then an exception condition is raised: dynamic SQL error — using
clause does not match dynamic parameter specifications.

1) The value of the host variable addressed by INDICATOR POINTER is not negative.
2) At least one of the following is true:

A) TYPE does not indicate ROW and the item descriptor area is not subordinate to an item
descriptor area for which the value of the host variable addressed by the INDICATOR
POINTER is not negative.

B) TYPE indicates ARRAY or ARRAY LOCATOR.
C) TYPE indicates MULTISET or MULTISET LOCATOR.

3) The value of the host variable addressed by DATA_POINTER is not a valid value of the
data type represented by the item descriptor area.

j) For each of the first AD item descriptor areas ADIDA in APD:

K)

i)

If the OCTET_LENGTH_POINTER field of ADIDA has the same non-zero value as the INDI-
CATOR_POINTER field of IDA, then SHARE is true for ADIDA,; otherwise, SHARE is false
for ADIDA.

Case:

1) If SHARE is true for ADIDA and the value of the commonly addressed host variable is the
appropriate 'Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CL1”,
then NULL is true for ADIDA.

2) If SHARE is false for ADIDA, INDICATOR_POINTER is not zero, and the value of the
host variable addressed by INDICATOR_POINTER is the appropriate ‘Code’ for SQL NULL
DATA in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for ADIDA.

3) Otherwise, NULL is false for ADIDA.

If NULL is false for ADIDA, OCTET_LENGTH_POINTER is not O (zero), and the value of the
host variable addressed by OCTET _LENGTH_POINTER is the appropriate 'Code' for SQL
NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then DEFERRED is true for
ADIDA,; otherwise, DEFERRED is false for ADIDA.

If all of the following are true for any item descriptor area in the first AD item descriptor areas of APD,
then an exception condition is raised: dynamic SQL error — using clause does not match dynamic
parameter specifications.

i)
i)

DEFERRED is true for the item descriptor area.

Either of the following is true:

1) The value of LEVEL is zero and TYPE indicates ROW, ARRAY, or MULTISET.
2) LEVEL is greater than O (zero).

Call-Level Interface specifications 43

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

)

n)

NOTE 10 — This rule states that a parameter whose type is ROW, ARRAY, or MULTISET shall be bound; it cannot
be a deferred parameter.

For each item descriptor area whose LEVEL is 0 (zero) and for each of its subordinate descriptor areas,
if any, for which DEFERRED is false in the first AD item descriptor areas of APD and whose corre-
sponding <dynamic parameter specification> has a <parameter mode> of PARAM MODE IN or
PARAM MODE INOUT, refer to the corresponding <dynamic parameter specification> value as an
immediate parameter value and refer to the corresponding <dynamic parameter specification> as an
immediate parameter.

Let IDA be the i-th item descriptor area of APD whose LEVEL value is 0 (zero). Let SDT be the data
type represented by IDA. The associated value of IDA, denoted by SV, is defined as follows.

Case:
i) If NULL is true for IDA, then SV is the null value.

i) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are the
associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:
1) LetV be the value of the host variable addressed by DATA_POINTER.
2) Case:
A) If TYPE indicates CHARACTER, then
Case:

1) If OCTET_LENGTH_POINTER is zero or if OCTET_LENGTH_POINTER is
not zero and the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, then let L be
the number of characters of V that precede the implementation-defined null
character that terminates a C character string.

I1) Otherwise, let Q be the value of the host variable addressed by
OCTET_LENGTH_POINTER and let L be the number of characters wholly
contained in the first Q octets of V.

B) Otherwise, let L be zero.

3) Let SV be V with effective data type SDT, as represented by the length value L and by the
values of the TYPE, PRECISION, and SCALE fields.

Let TDT be the effective data type of the i-th immediate parameter as represented by the values of the
TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IPD for which the LEVEL value is 0 (zero), and all its subordi-
nate descriptor areas.

Let SDT be the effective data type of the i-th bound parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

44 Call-Level Interface (SQL/CLI)

p)

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the corresponding item descriptor area of APD for which the LEVEL is 0 (zero), and all its
subordinate descriptor areas.

Case:

i) If SDT is a locator type, then let TV be the value SV.

i) If DT and TDT are predefined types, then:
1) Case:

A)

B)

If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the i-th bound target.

Otherwise:
1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

I) The <cast specification>

CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th bound target.

2) Let UDT be the effective data type of the actual i-th immediate parameter, defined to be the
data type represented by the values of the TYPE, LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the corresponding item descriptor
area of IPD if POPULATE IPD was True for C.

3)

Case:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", in

ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type UDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type UDT and the result is the value TV of the i-th immediate parameter.

Call-Level Interface specifications 45

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses

B) Otherwise:

)] If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

I1) The <cast specification>

CAST (TV AS UDT)

is effectively performed and the result is the value of the i-th immediate parameter.
iii) If DT is a predefined type and TDT is a user-defined type, then:

1) Let DT be the data type identified by TDT.

2) Ifthe current SQL-session has a group name corresponding to the user-defined name of DT,
then let GN be that group name; otherwise, let GN be the default transform group name
associated with the current SQL-session.

3) The Syntax Rules of Subclause 9.21, “Determination of a to-sql function”, in ISO/IEC 9075-
2, are applied with DT as TYPE and GN as GROUP.

Case:

A) If there is an applicable to-sqgl function, then let TSF be that to-sql function. If TSF is
an SQL-invoked method, then let TSFPT be the declared type of the second SQL
parameter of TSF; otherwise, let TSFPT be the declared type of the first SQL parameter
of TSF.

Case:
)] If TSFPT is compatible with SDT, then

Case:
1) If TSF is an SQL-invoked method, then TSF is effectively invoked with the
value returned by the function invocation:

DTO

as the first parameter and SV as the second parameter. The result of evaluating
the expression TSF(DT(), SV) is the value of the i-th immediate parameter.

2) Otherwise, TSF is effectively invoked with SV as the first parameter. The
result of evaluating the expression TSF(SV) is the value of the i-th immediate
parameter.

I1) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

46 Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)
5.6 Implicit EXECUTE USING and OPEN USING clauses
q) If DEFERRED is true for at least one of the first AD item descriptor areas of APD, then:
i) Let PN be the parameter number associated with the first such item descriptor area.
i) PN becomes the deferred parameter number associated with AS
i) If Tis'EXECUTE', then Shecomes the statement source associated with AS

iv) Anexception condition is raised: CLI-specific condition — dynamic parameter value needed.

Call-Level Interface specifications 47

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

5.7

Implicit CALL USING clause

Function

Specify the rules for an implicit CALL USING clause.

General Rules

1) Let Sand ASbe a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclause.

2) Let IPD and APD be the current implementation parameter descriptor and current application row
descriptor, respectively, for AS

3)

IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specification>
values, respectively, for the <call statement> being executed. Let D be the number of <dynamic parameter
specification>s in S

a)

b)

d)

9)

Let AD be the value of the COUNT field of APD. If AD is less than zero, then an exception condition
is raised: dynamic SQL error — invalid descriptor count.

For each item descriptor area in the APD whose LEVEL is 0 (zero) in the first AD item descriptor areas
of APD, and for all of their subordinate descriptor areas, refer to a <dynamic parameter specification>
value whose corresponding item descriptor areas have a non-zero DATA_POINTER value and whose
corresponding <dynamic parameter specification> has a <parameter mode> of PARAM MODE OUT
or PARAM MODE INOUT as a bound target and refer to the corresponding <dynamic parameter
specification> as a bound parameter.

If any item descriptor area corresponding to a bound target in the first AD item descriptor areas of APD
is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an exception
condition is raised: dynamic SQL error — using clause does not match target specifications.

Let SDT be the effective data type of the i-th bound parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IPD for which the LEVEL is 0 (zero) and all of its subordinate
descriptor areas. Let SV be the value of the output parameter, with data type SDT.

If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound parameter
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item descriptor
area of IPD.

Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of APD corresponding to the i-th bound target (or part thereof, if the item descriptor
area is a subordinate descriptor).

Case:
i) If TYPE indicates CHARACTER, then:

48 Call-Level Interface (SQL/CLI)

h)

i)

Case:

i)

i)

1)

2)

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

Let UT be the code value corresponding to CHARACTER VARYING as specified in Table 7,
“Codes used for implementation data types in SQL/CLI”.

Let LV be the implementation-defined maximum length for a CHARACTER VARYING
data type.

Otherwise, let UT be TYPE and let LV be 0 (zero).

Let TDT be the effective data type of the i-th bound target as represented by the type UT, the length
value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_ CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item descriptor area of APD for
which the LEVEL is 0 (zero) and all its subordinate descriptor areas.

If TDT is a locator type, then

Case:

1) If SVis not the null value, then a locator L that uniquely identifies SV is generated and the
value TV of the i-th bound target is set to an implementation-dependent four-octet value that
represents L.

2) Otherwise, the value TV of the i-th bound target is the null value.

If SDT and TDT are predefined types, then

Case:

1) If the <cast specification>
CAST (SV AS TDT)
does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, in ISO/IEC
9075-2, and there is an implementation-defined conversion from type SDT to type TDT,
then that implementation-defined conversion is effectively performed, converting SV to type
TDT, and the result is the value TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>
CAST (SV AS TDT)
does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", in
ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) The <cast specification>
CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th bound target.

If SDT is a user-defined type and TDT is a predefined data type, then:

Call-Level Interface specifications 49

CD 9075-3: 200x(E)

5.7 Implicit CALL USING clause

1)
2)

3)

Let DT be the data type identified by SDT.

If the current SQL-session has a group name corresponding to the user-defined name of DT,
then let GN be that group name; otherwise, let GN be the default transform group name
associated with the current SQL-session.

The Syntax Rules of Subclause 9.19, “Determination of a from-sgl function”, in ISO/IEC
9075-2, are applied with DT as TYPE and GN as GROUP.

Case:

A) If there is an applicable from-sqgl function, then let FSF be that from-sgl function and
let FSFRT be the <returns data type> of FS-.

Case:

)] If FSFRT is compatible with TDT, then the from-sql function TSF is effectively
invoked with SV as its input parameter and the result of evaluating TSF(SV) is
the value TV of the i-th bound target.

I1) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

J) Let IDA be the top-level item descriptor area corresponding to the i-th output parameter.

k) Case:

i)

i)

If TYPE indicates ROW, then

Case:

1)

2)

If TV is the null value, then

Case:

A) IfIP is a null pointer for IDA or for any of the subordinate descriptor areas of DA that
are not subordinate to an item descriptor area whose type indicates ARRAY, ARRAY
LOCATOR, MULTISET, or MULTISET LOCATOR, then an exception condition is
raised: data exception — null value, no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP for IDA, and those in all sub-
ordinate descriptor areas of DA that are not subordinate to an item descriptor area whose
TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR
are set to the appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous
codes used in CLI”, and the values of variables addressed by DP and LP are implemen-
tation-dependent.

Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the i-th
field of TV by applying General Rule 3)k) to the i-th subordinate descriptor area of IDA as
IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as SV, and the data
type of the i-th field of SV as SDT.

Otherwise,

Case:

50 Call-Level Interface (SQL/CLI)

1)

2)

CD 9075-3:200x(E)
5.7 Implicit CALL USING clause

If TV is the null value, then
Case:

A) IfIPisanull pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

B) Otherwise, the value of the host variable addressed by IP is set to the appropriate 'Code'
for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, and the values
of the host variables addressed by DP and LP are implementation-dependent.

Otherwise:

A) If IPis not a null pointer, then the value of the host variable addressed by IP is set to 0
(zero).

B) Case:
1) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV is a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-length
character string.

2) The General Rules of Subclause 5.9, “Character string retrieval”, are applied
with DP, TV, OL, and LP as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

1)) If TYPE indicates BINARY LARGE OBJECT, then the General Rules of
Subclause 5.10, “Binary string retrieval”, are applied with DP, TV, OL, and LP
as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

I11) If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET
LOCATOR and if RETURNED_CARDINALITY_POINTER is not 0 (zero),
then the value of the host variable addressed by RETURNED_CARDINAL-
ITY_POINTER is set to the cardinality of TV.

IV) Otherwise, the value of the host variable addressed by DP is set to TV.

Call-Level Interface specifications 51

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

5.8

Implicit FETCH USING clause

Function

Specify the rules for an implicit FETCH USING clause.

General Rules

1) LetS RS RP, and ASbe a SOURCE, ROWS ROWSPROCESSED, and an ALLOCATED STATEMENT
specified in the rules of this Subclause.

2)

3)

Let IRD and ARD be the current implementation row descriptor and current application row descriptor,
respectively, associated with AS

IRD and ARD describe the <select list> columns and <target specification>s, respectively, for the column
values that are to be retrieved. Let D be the degree of the table defined by S

a)

b)

d)

9)
h)

Let AD be the value of the COUNT field of ARD. If AD is less than zero, then an exception condition
is raised: dynamic SQL error — invalid descriptor count.

For each item descriptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor areas
of ARD, and for all of their subordinate descriptor areas, refer to a <target specification> whose corre-
sponding item descriptor areas have a non-zero DATA_POINTER as a bound target and refer to the
corresponding <select list> column as a bound column.

If any item descriptor area corresponding to a bound target in the first AD item descriptor areas of ARD
is not valid as specified in Subclause 5.13, “Description of CLI item descriptor areas”, then an exception
condition is raised: dynamic SQL error — using clause does not match target specifications.

Let SDT be the effective data type of the i-th bound column as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of IRD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound column
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item descriptor
area of IRD.

Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of ARD corresponding to the i-th bound target (or part thereof, if the item descriptor
area is a subordinate descriptor).

Let ASP be the value of the ARRAY_STATUS POINTER field in IRD.
For RN ranging from 1 (one) through RS if the RN-th row of the rowset has been fetched, then:
i) Let SV be the value of the <select list> column, with data type SDT.

52 Call-Level Interface (SQL/CLI)

i)

v)

vi)

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

Let DPE, IPE, and LPE be the addresses of the RN-th element of the arrays addressed by DP,
IP, and LP, respectively.

Case:
1) If TYPE indicates CHARACTER, then:

A) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, “Codes used for implementation data types in SQL/CLI".

B) LetLVbethe implementation-defined maximum length fora CHARACTER VARYING
data type.

2) Otherwise, let UT be TYPE and let LV be 0 (zero).

Let TDT be the effective data type of the i-th bound target as represented by the type UT, the
length value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the item descriptor area of ARD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

Let LTDT be the data type on the last fetch of the i-th bound target, if any. If any of the following
is true, then is implementation-defined whether or not an exception condition is raised: dynamic
QL error — restricted data type attribute violation.

1) LTDT and TDT both identify a binary large object type and only one of LTDT and TDT is
a binary large object locator.

2) LTDT and TDT both identify a character large object type and only one of LTDT and TDT
is a character large object locator.

3) LTDT and TDT both identify an array type and only one of LTDT and TDT is an array
locator.

4) LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a multiset
locator.

5) LTDT and TDT both identify a user-defined type and only one of LTDT and TDT is a user-
defined type locator.

Case:
1) If TDT is a locator type, then;

A) If SVis not the null value, then a locator L that uniquely identifies SV is generated and
the value TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

B) Otherwise, the value TV of the i-th bound target is the null value.
2) If DT and TDT are predefined types, then
Case:

A) If the <cast specification>

Call-Level Interface specifications 53

CD 9075-3: 200x(E)

5.8 Implicit FETCH USING clause

3)

B)

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", in
ISO/IEC 9075-2, and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed, con-
verting SV to type TDT, and the result is the value TV of the i-th bound target.

Otherwise:

)] If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>",
in ISO/IEC 9075-2, then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

I1) The <cast specification>

CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th bound target.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is set to
i. If ASP is not a null pointer, then the RN-th element of the array addressed by
ASP is set to:

1) If there were completion conditions: warning raised during the application
of this Rule, then 6 (indicating Row success with information).

2) If there were exception conditions raised during the application of this Rule,
then 5 (indicating Row error).

I11) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

If SDT is a user-defined type and TDT is a predefined data type, then:
A) Let DT be the data type identified by SDT.

B)

C)

If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

The Syntax Rules of Subclause 9.19, “Determination of a from-sgl function”, in ISO/IEC
9075-2, are applied with DT and GN as TYPE and GROUP, respectively.

Case:

1) If there is an applicable from-sgl function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:

54 Call-Level Interface (SQL/CLI)

1)

CD 9075-3:200x(E)
5.8 Implicit FETCH USING clause

1) If FSFRT is compatible with TDT, then the from-sgl function TSF is effec-
tively invoked with SV as its input parameter and the the result of evaluating
TSF(SV) is the value TV of the i-th bound target.

2) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

Otherwise, an exception condition is raised: dynamic SQL error — data type
transform function violation.

vii) Let IDA be the top-level item descriptor area corresponding to the i-th bound column.

viii) Case:

1) If TYPE indicates ROW, then

Case:

A) If TV is the null value, then

Case:

1)

1)

If IPE is a null pointer for IDA or for any of the subordinate descriptor areas of
IDA that are not subordinate to an item descriptor area whose type indicates
ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, then
an exception condition is raised: data exception — null value, no indicator
parameter.

Otherwise, the value of the host variable addressed by IPE for IDA, and that in
all subordinate descriptor areas of IDA that are not subordinate to an item
descriptor area whose TYPE indicates ARRAY, ARRAY LOCATOR, MULTI-
SET, or MULTISET LOCATOR, is set to the appropriate 'Code’ for SQL NULL
DATA in Table 27, “Miscellaneous codes used in CLI”, and the values of vari-
ables addressed by DPE and LPE are implementation-dependent.

B) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the
i-th field of TV by applying General Rule 3)h)viii) to the i-th subordinate descriptor area
of IDA as IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as
SV, and the data type of the i-th field of SV as SDT.

2) Otherwise,

Case:

A) If TV is the null value, then

Case:

1)

1)

If IPE is a null pointer, then an exception condition is raised: data exception —
null value, no indicator parameter.

Otherwise, the value of the host variable addressed by IPE is set to the appropriate
'‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”,
and the values of the host variables addressed by DPE and LPE are implementa-
tion-dependent.

B) Otherwise:

Call-Level Interface specifications 55

CD 9075-3: 200x(E)

5.8 Implicit FETCH USING clause

1)

1)

If IPE is not a null pointer, then the value of the host variable addressed by IPE
is set to O (zero).

Case:

1)

2)

3)

4)

5)

If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

a) If TVis a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-
length character string.

b) The General Rules of Subclause 5.9, “Character string retrieval”, are
applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

For every status record that results from the application of the preceding
Rule, the ROW_NUMBER field is set to RN and the COLUMN_NUMBER
field is set to i. If ASP is not a null pointer, then the RN-th element of the
array addressed by ASP is set to:

a) Ifthere were completion conditions: warning raised during the application
of the preceding Rule, then 6 (indicating Row successwith infor mation).

b) If there were exception conditions raised during the application of the
preceding Rule, then 5 (indicating Row error).

If TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE
OBJECT, then the General Rules of Subclause 5.10, “Binary string retrieval”,
are applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is set to RN and the COLUMN_NUMBER field is
set to i. If ASP is not a null pointer, then the RN-th element of the array
addressed by ASP is set to:

a) Ifthere were completion conditions: warning raised during the application
of this Rule, then 6 (indicating Row success with infor mation).

b) If there were exception conditions raised during the application of this
Rule, then 5 (indicating Row error).

If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTI-
SET LOCATOR, and if RETURNED_CARDINALITY_POINTER is not a
null pointer, then the value of the host variable addressed by
RETURNED_CARDINALITY_POINTER is set to the cardinality of TV.

Otherwise, the value of the host variable addressed by DPE is set to TV and
the value of the host variable addressed by LPE is implementation-dependent.

3) If there were no exception conditions raised during the application of this Rule, then:

A) Increment RP by 1 (one).

B) If ASPis not a null pointer, then set the RN-th element of the array pointed to by ASP
to 0 (zero, indicating Row success).

56 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.9 Character string retrieval

5.9 Character stringretrieval

Function

Specify the rules for retrieving character string values.

General Rules

1) LetT,V,TL,and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH
specified in an application of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

3) LetL be the length in octets of V.
4) If RL is not a null pointer, then the value of the host variable addressed by RL is set to L.
5) Case:
a) If null termination is False for the current SQL-environment, then
Case:

i) If L is not greater than TL, then the first L octets of T are set to V and the values of the remaining
octets of T are implementation-dependent.

i) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning —
string data, right truncation.

b) Otherwise, let NB be the length in octets of a null terminator in the character set of T.
Case:

i) If L is not greater than (TL-NB), then the first (L+NB) octets of T are set to V concatenated with
a single implementation-defined null character that terminates a C character string. The values
of the remaining characters of T are implementation-dependent.

i) Otherwise, T is set to the first (TL—NB) octets of V concatenated with a single implementation-
defined null character that terminates a C character string and a completion condition is raised:
warning — string data, right truncation.

Call-Level Interface specifications 57

CD 9075-3:200x(E)
5.10 Binary stringretrieval

5.10 Binary stringretrieval

Function

Specify the rules for retrieving binary string values.

General Rules

1) LetT,V,TL,and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH
specified in an application of this Subclause.

2) If TL is not greater than zero (0), then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

3) LetL be the length in octets of V.
4) If RL is not a null pointer, then RL is set to L.
5) Case:

a) If L is not greater than TL, then the first L octets of T are set to V and the values of the remaining octets
of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning — string
data, right truncation.

58 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.11 Deferred parameter check

5.11 Deferred parameter check

Function

Check for the existence of deferred dynamic parameters when accessing a CLI descriptor.

General Rules

1)
2)
3)
4)
5)

6)

Let DA be a DESCRIPTOR AREA specified in an application of this Subclause.

Let C be the allocated SQL-connection with which DA is associated.

Let L1 be the set of all allocated SQL-statements associated with C.

Let L2 be the set of all allocated SQL-statements in L1 which have an associated deferred parameter number.

Let L3 be the set of all CLI descriptor areas that are either the current application parameter descriptor for,
or the implementation parameter descriptor associated with, an allocated SQL-statement in L2.

If DA is contained in L3, then an exception condition is raised: CLI-specific condition — function sequence
error.

Call-Level Interface specifications 59

CD 9075-3:200x(E)
5.12 CLI-specific status codes

5.12 CLI-specific status codes

Some of the conditions that can occur during the execution of CLI routines are CLI-specific. The corresponding
status codes are listed in Table 5, “SQLSTATE class and subclass values for SQL/CLI-specific conditions”.

Table5 — SQL STATE class and subclass values for SQL/CL |-specific conditions

Category | Condition Class | Subcondition Subclass

X CLI-specific condition HY (no subclass) 000

associated statement is not pre- 007
pared

attempt to concatenate a null value | 020

attribute cannot be set now 011
column type out of range 097
dynamic parameter value needed | (Seethe
Note at the
end of the
table)
function sequence error 010

inconsistent descriptor information | 021

invalid attribute identifier 092
invalid attribute value 024
invalid cursor position 109
invalid data type 004

invalid data type in application 003
descriptor

invalid descriptor field identifier | 091

invalid fetch orientation 106

invalid Functionld specified 095

invalid handle (Seethe
Note at the
end of the
table)

60 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.12 CLI-specific status codes

Category | Condition Class | Subcondition Subclass
invalid information type 096
invalid LengthPrecision value 104
invalid parameter mode 105
invalid retrieval code 103
invalid string length or buffer 090
length

invalid transaction operation code | 012

invalid use of automatically-allo- | 017
cated descriptor handle

invalid use of null pointer 009
limit on number of handles 014
exceeded

memory allocation error 001
memory management error 013

non-string data cannot be sentin | 019
pieces

non-string data cannot be used 055
with string routine

nullable type out of range 099

operation canceled 008

optional feature not implemented | CO0

row value out of range 107

scope out of range 098

server declined the cancellation 018
request

NOTE 11 — No subclass value is defined for the subcondition invalid handle since no diagnostic information can be generated in this
case, nor for the subcondition dynamic parameter value needed, since no diagnostic information is generated in this case.

Call-Level Interface specifications 61

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

5.13 Description of CLI item descriptor areas

This Subclause is modified by Subclause 19.3, “Description of CLI itemdescriptor areas”, in | SO/IEC 9075-9.

Function

Specify the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1)

2)

3)

4)

5)

A CLI item descriptor area comprises the fields specified in Table 6, “Fields in SQL/CLI row and parameter
descriptor areas”.

Given a CLI item descriptor area IDA in which the value of LEVEL is some value N, the immediately
subordinate descriptor areas of IDA are those CL1 item descriptor areas in which the value of LEVEL is
N+1 and whose position in the CLI descriptor area follows that of IDA and precedes that of any CLI item
descriptor area in which the value of LEVEL is less than N+1. The subordinate descriptor areas of IDA are
those CLI item descriptor areas that are immediately subordinate descriptor areas of IDA or that are subor-
dinate descriptor areas of an CLI item descriptor area that is immediately subordinate to |DA.

Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are defined to
be

Case:

a) If DT is ROW, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) If DT is ARRAY or MULTISET, then the descriptor of the associated element type of DT. The subor-
dinate descriptors of DE are those descriptors that are immediately subordinate descriptors of DE or
that are subordinate descriptors of a descriptor that is immediately subordinate to DE.

Given a descriptor DE, let SDE; represent its j-th immediately subordinate descriptor. There is an implied
ordering of the subordinate descriptors of DE, such that:

a) SDE; is in the first ordinal position.

b) The ordinal position of SDEj+ is K+NSt+1, where K is the ordinal position of SDE; and NSis the
number of subordinate descriptors of SDE;. The implicitly ordered subordinate descriptors of SDE;
occupy contiguous ordinal positions starting at position K+1.

Let IDA be an item descriptor area in an implementation parameter descriptor. IDA is valid if and only if
all of the following are true:

a) TYPE is one of the code values in Table 7, “Codes used for implementation data types in SQL/CLI”.

b) IfLEVEL isO (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT of the implementation
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

c) Exactly one of the following is true:

62 Call-Level Interface (SQL/CLI)

vii)

viii)

X)
xi)
Xii)

xiii)

Xiv)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

TYPE indicates CHARACTER or CHARACTER VARYING, or CHARACTER LARGE
OBJECT and LENGTH is a valid length value for a <character string type>.

TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT and LENGTH
is a valid length value for a <binary string type>.

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.
TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.
TYPE indicates BOOLEAN.

TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is one of the code values
in Table 9, “Codes associated with datetime data types in SQL/CLI”, and PRECISION is a valid
precision value for the <time precision> or <timestamp precision> of the indicated datetime
data type.

TYPE indicates an <interval type>, DATETIME_INTERVAL_CODE is one of the code values
in Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, to indicate the <interval
qualifier> of the interval data type, DATETIME_INTERVAL_PRECISION is a valid <interval
leading field precision>, and PRECISION is a valid precision value for <interval fractional
seconds precision>, if applicable.

TYPE indicates USER-DEFINED TYPE.
TYPE indicates REF.

TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row type,
there are exactly N immediately subordinate descriptor areas of IDA, and those item descriptor
areas are valid.

TYPE indicates ARRAY or ARRAY LOCATOR, the value of CARDINALITY is a valid value
for the maximum cardinality of an array, there is exactly one immediately subordinate descriptor
area of IDA, and that item descriptor area is valid.

TYPE indicates an implementation-defined data type.

6) LetHL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

7)

A CLI item descriptor area in a CLI descriptor area that is not an implementation row descriptor is consi stent
if and only if all of the following are true:

a) TYPE indicates DEFAULT or is one of the code values in Table 8, “Codes used for application data
types in SQL/CLI”.

b) All of the following are true:

Call-Level Interface specifications 63

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

i) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI".
i) TYPE is neither ROW, ARRAY, nor MULTISET.

iii) The row that contains the SQL data type corresponding to TYPE in the SQL data type column
of the operative data type correspondence table does not contain “None” in the host data type
column.

c) Exactly one of the following is true:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

i) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

iv) TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, CHARACTER
LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT,
BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE
PRECISION, USER-DEFINED TYPE LOCATOR, or REF.

V) TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

vi) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

vii) TYPE indicates an implementation-defined data type.

8) LetIDAbeaCLIitem descriptor area in an application parameter descriptor. Let IDAL be the corresponding
item descriptor area in the implementation parameter descriptor.

9) Ifthe OCTET_LENGTH_POINTER field of IDA has the same non-zero value as the INDICA-
TOR_POINTER field of IDA, then SHARE is true for IDA; otherwise, SHARE is false for IDA.

10) Case:

a) If SHARE is true and the value of the commonly addressed host variable is the appropriate 'Code' for
SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for IDA.

b) If SHARE is false, INDICATOR_POINTER is not zero, and the value of the host variable addressed
by INDICATOR_POINTER is the appropriate 'Code’ for SQL NULL DATA in Table 27, “Miscellaneous
codes used in CLI”, then NULL is true for IDA.

c) Otherwise, NULL is false for IDA.

11) If NULL is false, OCTET_LENGTH_POINTER is not zero, and the value of the host variable addressed
by OCTET_LENGTH_POINTER the appropriate 'Code’ for DATA AT EXEC in Table 27, “Miscellaneous
codes used in CLI”, then DEFERRED is true for IDA; otherwise, DEFERRED is false for IDA.

12) IDAis valid if and only if:

a) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, and
at least one of the following is true:

64 Call-Leve Interface (SQL/CLI)

b)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

TYPE is ROW, ARRAY, or MULTISET.

The row of the operative data type correspondences table that contains the SQL data type corre-
sponding to the value of TYPE in the SQL data type column does not contain ‘None' in the host
data type column.

If LEVEL is O (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

One of the following is true:

Case:

i)

i)

TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, and one of the following is true:

1) NULL is true.
2) DEFERRED is true.

3) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value V of the host variable addressed by
OCTET_LENGTH_POINTER is greater than zero, and the number of characters wholly
contained in the first V octets of the host variable addressed by DATA_POINTER is a valid
length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

4) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAM MODE INOUT, the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, and the number of charac-
ters of the value of the host variable addressed by DATA_POINTER that precede the
implementation-defined null character that terminates a C character string is a valid length
value fora CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

5) OCTET_LENGTH_POINTER is zero, PARAMETER_MODE in IDA1 is PARAM MODE
IN or PARAM MODE INOUT, and the number of characters of the value of the host variable
addressed by DATA_POINTER that precede the implementation-defined null character that
terminates a C character string is a valid length value for a CHARACTER, CHARACTER
LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT data
type, as indicated by TYPE.

6) PARAMETER_MODE in IDAl is PARAM MODE OUT.

TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, or USER-DEFINED TYPE LOCATOR and one of the following is true:

1) NULL is true.
2) DEFERRED is true.

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

Call-Level Interface specifications 65

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

d)

v)

vi)

vii)

viii)

iX)

X)

TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.
TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.
TYPE indicates REF and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

TYPE indicates an implementation-defined data type.

One of the following is true:

DATA_POINTER is zero and NULL is true.

DATA _POINTER is zero and DEFERRED is true.

DATA_POINTER is not zero and exactly one of the following is true:
1) NULL is true.

2) DEFERRED is true.

3) PARAMETER_MODE in IDA1 is PARAM MODE IN or PARAM MODE INOUT and the
value of the host variable addressed by DATA_POINTER is a valid value of the data type
indicated by TYPE.

4) PARAMETER_MODE in IDA1 is PARAM MODE OUT.

13) A CLI item descriptor area in an application row descriptor is valid if and only if:

a) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, and
at least one of the following is true:

b)

i)
i)

TYPE is ROW, ARRAY, or MULTISET.

The row of the operative data type correspondences table that contains the SQL data type corre-
sponding to the value of TYPE in the SQL data type column does not contain ‘'None' in the host
data type column.

If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in the
implementation parameter descriptor.

One of the following is true:

Case:

i)

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

66 Call-Level Interface (SQL/CLI)

Vi)

vii)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, CHARACTER LARGE
OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT, BINARY
LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECI-
SION, USER-DEFINED TYPE LOCATOR, or REF.

TYPE indicates ROW and, where N is the value of the DEGREE field in the corresponding item
descriptor area in the implementation parameter descriptor, there are exactly N immediately
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item descriptor area
is valid.

TYPE indicates an implementation-defined data type.

Table6 — Fieldsin SQL/CLI row and parameter descriptor areas

Field

Data Type

ALLOC_TYPE

SMALLINT

ARRAY_SIZE

INTEGER

ARRAY_STATUS_POINTER

host variable address of INTEGER

COUNT

SMALLINT

DYNAMIC_FUNCTION

CHARACTER VARYING(L)"

DYNAMIC_FUNCTION_CODE

INTEGER

KEY_TYPE

SMALLINT

ROWS_PROCESSED_POINTER

host variable address of INTEGER

TOP_LEVEL_COUNT

SMALLINT

Implementation-defined header field

Implementation-defined data type

CARDINALITY

INTEGER

CHARACTER_SET_CATALOG

CHARACTER VARYING(L)

CHARACTER_SET_NAME

CHARACTER VARYING(L)"

CHARACTER_SET_SCHEMA

CHARACTER VARYING(L)'

Call-Level Interface specifications 67

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Field Data Type
COLLATION_CATALOG CHARACTER VARYING(L)"
COLLATION_NAME CHARACTER VARYING(L)
COLLATION_SCHEMA CHARACTER VARYING(L)"
CURRENT_TRANSFORM_GROUP CHARACTER VARYING(L1)"
DATA _POINTER host variable address
DATETIME_INTERVAL_CODE SMALLINT
DATETIME_INTERVAL_PRECISION SMALLINT

DEGREE INTEGER
INDICATOR_POINTER host variable address of INTEGER
KEY_MEMBER SMALLINT

LENGTH INTEGER

LEVEL INTEGER

NAME CHARACTER VARYING(L)'
NULLABLE SMALLINT

OCTET_LENGTH INTEGER
OCTET_LENGTH_POINTER host variable address of INTEGER
PARAMETER_MODE SMALLINT
PARAMETER_ORDINAL_POSITION SMALLINT
PARAMETER_SPECIFIC_CATALOG CHARACTER VARYING(L)'
PARAMETER_SPECIFIC_NAME CHARACTER VARYING(L)'
PARAMETER_SPECIFIC_SCHEMA CHARACTER VARYING(L)!
PRECISION SMALLINT
RETURNED_CARDINALITY_POINTER | host variable address of INTEGER
SCALE SMALLINT

68 Call-Level Interface (SQL/CLI)

CD 9075-3: 200x(E)

5.13 Description of CLI item descriptor areas

Field

Data Type

SCOPE_CATALOG

CHARACTER VARYING(L)"

SCOPE_NAME

CHARACTER VARYING(L)

SCOPE_SCHEMA

CHARACTER VARYING(L)

SPECIFIC_TYPE_CATALOG

CHARACTER VARYING(L)

SPECIFIC_TYPE_NAME

CHARACTER VARYING(L)"

SPECIFIC_TYPE_SCHEMA

CHARACTER VARYING(L)

TYPE

SMALLINT

UNNAMED

SMALLINT

USER_DEFINED_TYPE_CATALOG

CHARACTER VARYING(L)

USER_DEFINED_TYPE_NAME

CHARACTER VARYING(L)

USER_DEFINED_TYPE_SCHEMA

CHARACTER VARYING(L)

USER_DEFINED_TYPE_CODE

SMALLINT

Implementation-defined item field

Implementation-defined data type

T WhereL is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum length for
the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

General Rules

1) Table 7, “Codes used for implementation data types in SQL/CLI”, specifies the codes associated with the
SQL data types used in implementation descriptor areas.

Table 7— Codes used for implementation data typesin SQL/CLI

Data Type Code
ARRAY 50
BIGINT 25
BINARY 60
BINARY LARGE OBJECT 30

Call-Level I nterface specifications 69

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Data Type Code
BINARY VARYING 61
BOOLEAN 16
CHARACTER 1 (one)
CHARACTER LARGE OBJECT 40
CHARACTER VARYING 12
DATE, TIME, TIME WITH TIME ZONE, TIMES- 9
TAMP, or TIMESTAMP WITH TIME ZONE

DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
INTERVAL 10
MULTISET 55
NUMERIC 2
REAL 7
REF 20
ROW 19
SMALLINT 5
USER-DEFINED TYPE 17
Implementation-defined data type <0 (zero)

2) Table 8, “Codes used for application data types in SQL/CLI", specifies the codes associated with the SQL
data types used in application descriptor areas.

Table 8 — Codes used for application data typesin SQL/CLI

Data Type Code

Implementation-defined data type <0 (zero)

70 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Data Type Code
ARRAY LOCATOR 51
BIGINT 25
BINARY 60
BINARY LARGE OBJECT 30
BINARY LARGE OBJECT LOCATOR 31
BINARY VARYING 61
CHARACTER 1 (one)
CHARACTER LARGE OBJECT 40
CHARACTER LARGE OBJECT LOCATOR 41
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
MULTISET LOCATOR 56
NUMERIC 2
REAL 7
REF 20
SMALLINT 5
USER-DEFINED TYPE LOCATOR 18

3) Table 9, “Codes associated with datetime data types in SQL/CLI”, specifies the codes associated with the

datetime data types allowed in SQL/CLLI.

Table 9 — Codes associated with datetime data typesin SQL/CLI

Datetime Data Type Code
DATE 1 (one)
TIME 2

Call-Level Interface specifications 71

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Datetime Data Type Code
TIME WITH TIME ZONE 4
TIMESTAMP 3
TIMESTAMP WITH TIME ZONE 5

4) Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, specifies the codes associated with
<interval qualifier>s for interval data types in SQL/CLI.

Table 10 — Codes associated with <interval qualifier>in SQL/CLI

Interval qualifier Code
DAY 3
DAY TO HOUR 8
DAY TO MINUTE 9
DAY TO SECOND 10
HOUR 4
HOUR TO MINUTE 11
HOUR TO SECOND 12
MINUTE 5
MINUTE TO SECOND 13
MONTH 2
SECOND 6
YEAR 1 (one)
YEAR TO MONTH 7

5) Table 11, “Codes associated with <parameter mode> in SQL/CLI”, specifies the codes associated with the
SQL parameter modes.

72 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.13 Description of CLI item descriptor areas

Table 11 — Codes associated with <parameter mode> in SQL/CLI

Parameter mode Code
PARAM MODE IN 1 (one)
PARAM MODE INOUT 2
PARAM MODE OUT 4

Table 12 — Codes associated with user-defined typesin SQL/CLI

User-defined Type Code
DISTINCT 1 (one)
STRUCTURED 2

Call-Level Interface specifications 73

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

5.14 Other tables associated with CLI

This Subclause is modified by Subclause 19.4, “Other tables associated with CLI"’, in ISO/IEC 9075-9.

The tables contained in this Subclause are used to specify the codes used by the various CLI routines.

Table 13 — Codes used for SQL/CLI diagnostic fields

Field Code Type
CATALOG_NAME 18 Status
CLASS_ORIGIN 8 Status
COLUMN_NAME 21 Status
COLUMN_NUMBER -1247 Status
CONDITION_IDENTIFIER 25 Status
CONDITION_NUMBER 14 Status
CONNECTION_NAME 10 Status
CONSTRAINT_CATALOG 15 Status
CONSTRAINT_NAME 17 Status
CONSTRAINT_SCHEMA 16 Status
CURSOR_NAME 22 Status
DYNAMIC_FUNCTION 7 Header
DYNAMIC_FUNCTION_CODE 12 Header
MESSAGE_LENGTH 23 Status
MESSAGE_OCTET_LENGTH 24 Status
MESSAGE_TEXT 6 Status
MORE 13 Header
NATIVE_CODE 5 Status
NUMBER 2 Header
PARAMETER_MODE 37 Status
PARAMETER_NAME 26 Status

74 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Field Code Type
PARAMETER_ORDINAL_POSITION | 38 Status
RETURNCODE 1 (one) Header
ROUTINE_CATALOG 27 Status
ROUTINE_NAME 29 Status
ROUTINE_SCHEMA 28 Status
ROW_COUNT 3 Header
ROW_NUMBER -1248 Status
SCHEMA_NAME 19 Status
SERVER_NAME 11 Status
SPECIFIC_NAME 30 Status
SQLSTATE 4 Status
SUBCLASS_ORIGIN 9 Status
TABLE_NAME 20 Status
TRANSACTION_ACTIVE 36 Header
TRANSACTIONS_COMMITTED 34 Header
TRANSACTIONS_ROLLED_BACK | 35 Header
TRIGGER_CATALOG 31 Status
TRIGGER_NAME 33 Status
TRIGGER_SCHEMA 32 Status
Implementation-defined diagnostics | < g (zero)! Header
header field

Implementation-defined diagnostics | < ¢ (zero)! Status

status field

! Except for values in this table that are less than 0 (zero).

Call-Level Interface specifications 75

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 14 — Codes used for SQL/CLI handle types

Handletype Code
CONNECTION HANDLE 2
DESCRIPTOR HANDLE 4
ENVIRONMENT HANDLE 1 (one)
STATEMENT HANDLE 3

Implementation-defined handle type

<1 (one) or > 100

Table 15 — Codes used for transaction ter mination

Termination type Code
COMMIT 0 (zero)
ROLLBACK 1 (one)
SAVEPOINT NAME ROLLBACK 2
SAVEPOINT NAME RELEASE 4
COMMIT AND CHAIN 6
ROLLBACK AND CHAIN 7
Implementation-defined termination <0 (zero)

type

Table 16 — Codes used for environment attributes

Attribute Code May be set
NULL TERMINATION 10001 Yes
Implementation-defined environment | > g (zero), Implementation-defined
attribute except values

given above

76 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 17 — Codes used for connection attributes

Attribute Code May be set
POPULATE IPD 10001 No
SAVEPOINT NAME 10027 Yes
Implementation-defined connection > 0 (zero), Implementation-defined
attribute except values
given above
Table 18 — Codes used for statement attributes
Attribute Code May be set
APD HANDLE 10011 Yes
ARD HANDLE 10010 Yes
IPD HANDLE 10013 No
IRD HANDLE 10012 No
CURRENT OF POSITION 10027 Yes
CURSOR HOLDABLE -3 Yes
CURSOR SCROLLABLE -1 Yes
CURSOR SENSITIVITY -2 Yes
METADATA ID 10014 Yes
NEST DESCRIPTOR 10029 Yes
Implementation-defined statement > 0 (zero), Implementation-defined
attribute except values
given above
Table 19 — Codes used for FreeStmt options
Option Code
CLOSE CURSOR 0 (zero)

Call-Level I nterface specifications 77

CD 9075-3: 200x(E)

5.14 Other tablesassociated with CLI

Option Code
FREE HANDLE 1 (one)
UNBIND COLUMNS 2
UNBIND PARAMETERS 3
REALLOCATE 4
Table 20 — Data types of attributes
Attribute Datatype Values
NULL TERMINATION INTEGER 0 (False) 1 (True)
POPULATE IPD INTEGER 0 (False) 1 (True)
APD HANDLE INTEGER Handle value
ARD HANDLE INTEGER Handle value
IPD HANDLE INTEGER Handle value
IRD HANDLE INTEGER Handle value
CURRENT OF POSITION INTEGER Integer value denoting the current row in the rowset
CURSOR HOLDABLE INTEGER 0 (NONHOLDABLE) 1 (HOLDABLE)
CURSOR SCROLLABLE INTEGER 0 (NONSCROLLABLE) 1 (SCROLLABLE)
CURSOR SENSITIVITY INTEGER 0 (ASENSITIVE) 1 (INSENSITIVE) 2 (SENSI-
TIVE)
METADATA ID INTEGER 0 (FALSE) 1 (TRUE)
NEST DESCRIPTOR INTEGER 0 (FALSE) 1 (TRUE)
SAVEPOINT NAME CHARACTER Not specified

Table 21 — Codes used for SQL/CLI descriptor fields

Field Code SQL Item Descriptor Name Type
ALLOC_TYPE 1099 (Not applicable) Header
ARRAY_SIZE 20 (Not applicable) Header

78 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Field Code SQL Item Descriptor Name Type
ARRAY_STATUS_POINTER 21 (Not applicable) Header
CARDINALITY 1040 CARDINALITY Item
CHARACTER_SET_CATALOG 1018 CHARACTER_SET_CATALOG Item
CHARACTER_SET_NAME 1020 CHARACTER_SET_NAME Item
CHARACTER_SET_SCHEMA 1019 CHARACTER_SET_SCHEMA Item
COLLATION_CATALOG 1015 COLLATION_CATALOG Item
COLLATION_NAME 1017 COLLATION_NAME Item
COLLATION_SCHEMA 1016 COLLATION_SCHEMA Item
COUNT 1001 COUNT Header
CURRENT_TRANSFORM_GROUP | 1039 (Not applicable) Item
DATA_POINTER 1010 DATA Item
DATETIME_INTERVAL_CODE 1007 DATETIME_INTERVAL_CODE Item
DATETIME_INTERVAL_PRECI- 26 DATETIME_INTERVAL_PRECISION | Item
SION

DEGREE 1041 DEGREE Item
DYNAMIC_FUNCTION 1031 DYNAMIC_FUNCTION Header
DYNAMIC_FUNCTION_CODE 1032 DYNAMIC_FUNCTION_CODE Header
INDICATOR_POINTER 1009 INDICATOR Item
KEY_MEMBER 1030 KEY_MEMBER Item
KEY_TYPE 1029 KEY_TYPE Header
LENGTH 1003 LENGTH Item
LEVEL 1042 LEVEL Item
NAME 1011 NAME Item
NULLABLE 1008 NULLABLE Item
OCTET_LENGTH 1013 OCTET_LENGTH Item

Call-Level Interface specifications 79

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Field Code SQL Item Descriptor Name Type
OCTET_LENGTH_POINTER 1004 Both OCTET_LENGTH (input) and Item

RETURNED_OCTET_LENGTH (out-

put)
PARAMETER_MODE 1021 PARAMETER_MODE Item
PARAMETER_ORDINAL_POSITION | 1022 PARAMETER_ORDINAL_POSITION | Item
PARAMETER_SPECIFIC_CATALOG | 1023 PARAMETER_SPECIFIC_CATALOG | Item
PARAMETER_SPECIFIC_NAME 1025 PARAMETER_SPECIFIC_NAME Item
PARAMETER_SPECIFIC_SCHEMA | 1024 PARAMETER_SPECIFIC_SCHEMA | Item
PRECISION 1005 PRECISION Item
RETURNED_CARDINAL- 1043 RETURNED_CARDINALITY Item
ITY_POINTER
ROW_PROCESSED_POINTER 34 (Not applicable) Header
SCALE 1006 SCALE Item
SCOPE_CATALOG 1033 SCOPE_CATALOG Item
SCOPE_NAME 1034 SCOPE_NAME Item
SCOPE_SCHEMA 1035 SCOPE_SCHEMA Item
SPECIFIC_TYPE_CATALOG 1036 (Not applicable) Item
SPECIFIC_TYPE_NAME 1038 (Not applicable) Item
SPECIFIC_TYPE_SCHEMA 1037 (Not applicable) Item
TOP_LEVEL_COUNT 1044 TOP_LEVEL_COUNT Header
TYPE 1002 TYPE Item
UNNAMED 1012 UNNAMED Item
USER_DEFINED_TYPE_CATALOG | 1026 USER_DEFINED_TYPE_CATALOG | Item
USER_DEFINED_TYPE_NAME 1028 USER_DEFINED_TYPE_NAME Item
USER_DEFINED_TYPE_SCHEMA | 1027 USER_DEFINED_TYPE_SCHEMA Item
USER_DEFINED_TYPE_CODE 1045 USER_DEFINED_TYPE_CODE Item

80 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Field Code SQL Item Descriptor Name Type

Implementation-defined descriptor 0 (zero) | Implementation-defined descriptor Header
header field through | header field

999, or =
1200,
exclud-
ing val-
ues
defined
in this
table

Implementation-defined descriptor item | 0 (zero) | Implementation-defined descriptor item | Item
field through | field

999, or =
1200,
exclud-
ing val-
ues
defined
in this
table

Table 22 — Ability to set SQL/CLI descriptor fields

May be set
Field ARD IRD APD IPD
ALLOC_TYPE No No No No'
ARRAY_SIZE No No
ARRAY_STATUS_POINTER
CARDINALITY No No No
CHARACTER_SET_CATALOG No
CHARACTER_SET_NAME No
CHARACTER_SET_SCHEMA No
COLLATION_CATALOG No
COLLATION_NAME No
COLLATION_SCHEMA No

Call-Level Interface specifications 81

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

May be set
Field ARD IRD APD IPD
COUNT No
CURRENT_TRANSFORM_GROUP No No No No
DATA_POINTER No
DATETIME_INTERVAL_CODE No
DATETIME_INTERVAL_PRECISION No
DEGREE No No No
DYNAMIC_FUNCTION No No No No
DYNAMIC_FUNCTION_CODE No No No No
INDICATOR_POINTER No No
KEY_MEMBER No No No No
KEY_TYPE No No No No
LENGTH No
LEVEL No
NAME No
NULLABLE No
OCTET_LENGTH No
OCTET_LENGTH_POINTER No No
PARAMETER_MODE No No No
PARAMETER_ORDINAL_POSITION No No No
PARAMETER_SPECIFIC_CATALOG No No No
PARAMETER_SPECIFIC_NAME No No No
PARAMETER_SPECIFIC_SCHEMA No No No
PRECISION No
RETURNED_CARDINALITY_POINTER No No

82 Call-Leve Interface (SQL/CLI)

CD 9075-3: 200x(E)

5.14 Other tablesassociated with CLI

May be set
Field ARD IRD APD IPD
ROWS_PROCESSED_POINTER No No
SCALE No
SCOPE_CATALOG No
SCOPE_NAME No
SCOPE_SCHEMA No
SPECIFIC_TYPE_CATALOG No No No No
SPECIFIC_TYPE_NAME No No No No
SPECIFIC_TYPE_SCHEMA No No No No
TOP_LEVEL_COUNT No
TYPE No
UNNAMED No
USER_DEFINED_TYPE_CATALOG No
USER_DEFINED_TYPE_NAME No
USER_DEFINED_TYPE_SCHEMA No
USER_DEFINED_TYPE_CODE No No No No
Implementation-defined descriptor header field ID ID ID ID
Implementation-defined descriptor item field ID ID ID ID
T Where “No” means that the descriptor field is not settable, “ID” means that it is implementation-defined whether or not the
descriptor field is settable, and the absence of any notation means that the descriptor field is settable.

Table 23 — Ability toretrieve SQL/CLI| descriptor fields

May beretrieved

Field ARD IRD APD IPD
ALLOC_TYPE PS
ARRAY_SIZE No No

Call-Level Interface specifications 83

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

May beretrieved

Field ARD IRD APD IPD
ARRAY_STATUS_POINTER

CARDINALITY No PS No
CHARACTER_SET_CATALOG PS
CHARACTER_SET_NAME PS
CHARACTER_SET_SCHEMA PS
COLLATION_CATALOG PS
COLLATION_NAME PS
COLLATION_SCHEMA PS

COUNT PS
CURRENT_TRANSFORM_GROUP PS

DATA_POINTER No No'
DATETIME_INTERVAL_CODE PS
DATETIME_INTERVAL_PRECISION PS

DEGREE No PS No
DYNAMIC_FUNCTION No No
DYNAMIC_FUNCTION_CODE No No
INDICATOR_POINTER No No
KEY_MEMBER No PS No No
KEY_TYPE No PS No No
LENGTH PS

LEVEL PS

NAME PS

NULLABLE PS

OCTET_LENGTH PS

84 Call-Leve Interface (SQL/CLI)

CD 9075-3: 200x(E)

5.14 Other tablesassociated with CLI

May beretrieved
Field ARD IRD APD IPD
OCTET_LENGTH_POINTER No No
PARAMETER_MODE No PS No No
PARAMETER_ORDINAL_POSITION No PS No No
PARAMETER_SPECIFIC_CATALOG No PS No No
PARAMETER_SPECIFIC_NAME No PS No No
PARAMETER_SPECIFIC_SCHEMA No PS No No
PRECISION PS
RETURNED_CARDINALITY_POINTER No No
ROWS_PROCESSED POINTER No No
SCALE PS
SCOPE_CATALOG PS
SCOPE_NAME PS
SCOPE_SCHEMA PS
SPECIFIC_TYPE_CATALOG PS
SPECIFIC_TYPE_NAME PS
SPECIFIC_TYPE_SCHEMA PS
TOP_LEVEL_COUNT PS
TYPE PS
UNNAMED PS
USER_DEFINED_TYPE_CATALOG PS
USER_DEFINED_TYPE_NAME PS
USER_DEFINED_TYPE_SCHEMA PS
USER_DEFINED_TYPE_CODE PS
Implementation-defined descriptor header field ID ID ID ID

Call-Level I nterface specifications 85

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

May beretrieved

Field

ARD

IRD

APD

IPD

Implementation-defined descriptor item field

ID

ID

ID

ID

T Where “No” means that the descriptor field is not retrievable, PS means that the descriptor field is retrievable from the IRD
only when a prepared or executed statement is associated with the IRD, the absence of any notation means that the descriptor
field is retrievable, and “ID” means that it is implementation-defined whether or not the descriptor field is retrievable.

Table 24 — SQL/CL1 descriptor field default values

Default values

Field ARD IRD APD IPD

ALLOC_TYPE AUTO- AUTO- AUTO- AUTO-
MATIC or MATIC MATIC or MATIC
USER USER

ARRAY_SIZE 1 (one) 1 (one)

ARRAY_STATUS_POINTER Null Null Null Null

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

COUNT 0 (zero) 0 (zero)

CURRENT_TRANSFORM_GROUP

DATA_POINTER Null Null

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECI-

SION

DEGREE

86 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Default values

Field

ARD

IRD

APD IPD

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

INDICATOR_POINTER

Null

Null

KEY_MEMBER

KEY_TYPE

LENGTH

LEVEL

0 (zero)

0 (zero)

NAME

NULLABLE

OCTET_LENGTH

OCTET_LENGTH_POINTER

Null

Null

PARAMETER_MODE

PARAMETER_ORDINAL_POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA

PRECISION

RETURNED_CARDINAL-
ITY_POINTER

Null

Null

ROWS_PROCESSED_POINTER

Null

Null

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

Call-Level Interface specifications 87

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Default values
Field ARD IRD APD IPD
SPECIFIC_TYPE_NAME
SPECIFIC_TYPE_SCHEMA
TOP_LEVEL _COUNT 0 (zero) 0 (zero)
TYPE DEFAULT DEFAULT
UNNAMED
USER_DEFINED_TYPE_CATALOG
USER_DEFINED_TYPE_NAME
USER_DEFINED_TYPE_SCHEMA
USER_DEFINED_TYPE_CODE
Implementation-defined descriptor ID ID ID ID
header field
]Ic_m%lementation-defined descriptor item | ID ID ID ID
ie

T Where “Null” means that the descriptor field's default value is a null pointer, the absence of any notation means that the
descriptor field's default value is initially undefined, “ID” means that the descriptor field's default value is implementation-defined,
and any other value specifies the descriptor field's default value.

Table 25 — Codes used for fetch orientation

Fetch Orientation Code
NEXT 1 (one)
FIRST 2
LAST 3
PRIOR 4
ABSOLUTE 5
RELATIVE 6

88 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 26 — Multi-row fetch status codes

Return codemeaning | Return code
Row success 0 (zero)
Row success with 6
information
Row error 5
No row 3
Table 27 — Miscellaneous codes used in CL|
Context Code | Indicates
Allocation type 1 (one) [AUTOMATIC
Allocation type 2 USER
Attribute value 0 FALSE, NONSCROLLABLE, ASENSITIVE, NO NULLS,
(zero) | NONHOLDABLE
Attribute value 1 (one) | TRUE, SCROLLABLE, INSENSITIVE, NULLABLE, HOLD-
ABLE
Attribute value 2 SENSITIVE
Data type 0 ALL TYPES
(zero)
Data type -99 APD TYPE
Data type -99 ARD TYPE
Data type 99 DEFAULT
Deferrable constraints 5 INITIALLY DEFERRED
Deferrable constraints 6 INITIALLY IMMEDIATE
Deferrable constraints 7 NOT DEFERRABLE
Input string length -3 NULL TERMINATED
Input or output data -1 SQL NULL DATA
Parameter length -2 DATA AT EXEC

Call-Level I nterface specifications 89

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Context Code Indicates
Referential Constraint 0 CASCADE
(zero)

Referential Constraint 1 (one) | RESTRICT

Referential Constraint 4 SET DEFAULT
Referential Constraint 2 SET NULL
Referential Constraint 3 NO ACTION

Table 28 — Codes used to identify SQL/CLI routines

Generic Name Code
AllocConnect 1 (one)
AllocEnv 2
AllocHandle 1001
AllocStmt 3
BindCol 4
BindParameter 72
Cancel 5
CloseCursor 1003
ColAttribute 6
ColumnPrivileges 56
Columns 40
Connect 7
CopyDesc 1004
DataSources 57
DescribeCol 8
Disconnect 9
EndTran 1005

90 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Generic Name Code
Error 10
ExecDirect 11
Execute 12
Fetch 13
FetchScroll 1021
ForeignKeys 60
FreeConnect 14
FreeEnv 15
FreeHandle 1006
FreeStmt 16
GetConnectAttr 1007
GetCursorName 17
GetData 43
GetDescField 1008
GetDescRec 1009
GetDiagField 1010
GetDiagRec 1011
GetEnvAttr 1012
GetFeaturelnfo 1027
GetFunctions 44
GetInfo 45
GetLength 1022
GetParamData 1025
GetPosition 1023
GetSessionInfo 1028

Call-Level Interface specifications 91

CD 9075-3: 200x(E)

5.14 Other tablesassociated with CLI

Generic Name Code
GetStmtAttr 1014
GetSubString 1024
GetTypelnfo 47
MoreResults 61
NextResult 73
NumResultCols 18
ParamData 48
Prepare 19
PrimaryKeys 65
PutData 49
RowCount 20
SetConnectAttr 1016
SetCursorName 21
SetDescField 1017
SetDescRec 1018
SetEnvAttr 1019
SetStmtAttr 1020
SpecialColumns 52
StartTran 74
TablePrivileges 70
Tables 54

I mplementation-
defined CLI routine

< 0 (zero), or 400 through 1299, or = 2000

92 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 29 — Codes and data types for implementation infor mation

Information Type Code Data Type
CATALOG NAME 10003 CHARACTER(1)
COLLATING SEQUENCE 10004 CHARACTER(254)
CURSOR COMMIT BEHAVIOR 23 SMALLINT

DATA SOURCE NAME 2 CHARACTER(128)
DBMS NAME 17 CHARACTER(254)
DBMS VERSION 18 CHARACTER(254)
DEFAULT TRANSACTION ISOLA- | 26 INTEGER

TION

IDENTIFIER CASE 28 SMALLINT
MAXIMUM CATALOG NAME 34 SMALLINT
LENGTH

MAXIMUM COLUMN NAME 30 SMALLINT
LENGTH

MAXIMUM COLUMNS IN GROUP | 97 SMALLINT

BY

MAXIMUM COLUMNS IN ORDER | 99 SMALLINT

BY

MAXIMUM COLUMNS IN SELECT | 100 SMALLINT
MAXIMUM COLUMNS IN TABLE | 101 SMALLINT
MAXIMUM CONCURRENT 1 (one) SMALLINT
ACTIVITIES

MAXIMUM CURSOR NAME 31 SMALLINT
LENGTH

MAXIMUM DRIVER CONNEC- 0 (zero) SMALLINT
TIONS

MAXIMUM IDENTIFIER LENGTH | 10005 SMALLINT
MAXIMUM SCHEMA NAME 32 SMALLINT
LENGTH

Call-Level Interface specifications 93

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Information Type Code Data Type
MAXIMUM STATEMENT OCTETS | 20000 SMALLINT
MAXIMUM STATEMENT OCTETS | 20001 SMALLINT
DATA
MAXIMUM STATEMENT OCTETS | 20002 SMALLINT
SCHEMA
MAXIMUM TABLE NAME LENGTH | 35 SMALLINT
MAXIMUM TABLES IN SELECT 106 SMALLINT
MAXIMUM USER NAME LENGTH | 107 SMALLINT
NULL COLLATION 85 SMALLINT
ORDER BY COLUMNS IN SELECT | 90 CHARACTER(1)
SEARCH PATTERN ESCAPE 14 CHARACTER(1)
SERVER NAME 13 CHARACTER(128)
SPECIAL CHARACTERS 94 CHARACTER(254)
TRANSACTION CAPABLE 46 SMALLINT
TRANSACTION ISOLATION 72 INTEGER
OPTION
Implementation-defined information Implementa- | Implementation-defined data type
type tion-defined

code
SQL implementation information 21000 CHARACTER(L]') or INTEGER

through

24999
SQL sizing information 25000 INTEGER

through

29999
Implementation-defined implementa- | 11000 CHARACTER(LY) or INTEGER
tion information through

14999
Implementation-defined sizing informa- | 15000 INTEGER
tion through

19999

L isthe implementation-defined maximum length of a variable-length character string.

94 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

NOTE 12 — Additional implementation information items are defined in Subclause 6.44, “SQL_IMPLEMENTATION_INFO base

table”, in ISO/IEC 9075-2.

Additional sizing items are defined in Subclause 6.45, “SQL_SIZING base table”, in ISO/IEC 9075-2.

Table 30 — Codes and data typesfor session implementation information

Information Type Code Data Type <general value specification>
CURRENT USER 47 CHARACTER(LT) USER and CURRENT_USER
CURRENT 20004 | cHARACTER(LT) | CURRENT_DEFAULT_TRANS-
DEFAULT TRANS- FORM_GROUP

FORM GROUP

CURRENT PATH 20005 | cHARACTER(LT) | CURRENT_PATH
CURRENT ROLE 20006 CHARACTER(LT) CURRENT_ROLE

SESSION USER 20007 CHARACTER(LT) SESSION_USER

SYSTEM USER 20008 | cHARACTER(LT) | SYSTEM_USER

CURRENT CATA- 20009 CHARACTER(LT) CURRENT_CATALOG

LOG

CURRENT SCHEMA | 20010 CHARACTER(LT) CURRENT_SCHEMA

T WherelL is the implementation-defined maximum length of the corresponding <general value specification>.

Table 31 — Valuesfor TRANSACTION ISOLATION OPTION with StartTran

Information Type Value
READ UNCOMMITTED 1 (one)
READ COMMITTED 2
REPEATABLE READ 4
SERIALIZABLE 8

Table 32 — Valuesfor TRANSACTION ACCESS MODE with StartTran

Information Type

Value

READ ONLY

1 (one)

Call-Level Interface specifications 95

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Information Type Value

READ WRITE 2

Table 33 — Codes used for concise data types

Data Type Code
Implementation-defined data type <0 (zero)
CHARACTER 1 (one)
CHAR 1 (one)
NUMERIC 2
DECIMAL 3

DEC 3
INTEGER 4

INT 4
SMALLINT 5
FLOAT 6
REAL 7
DOUBLE 8
BINARY 60
BINARY VARYING 61
VARBINARY 61
CHARACTER VARYING 12
CHAR VARYING 12
VARCHAR 12
BOOLEAN 16
USER-DEFINED TYPE 17
ROW 19
REF 20

96 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Data Type Code
BIGINT 25
BINARY LARGE OBJECT 30
BLOB 30
CHARACTER LARGE OBJECT 40
CLOB 40
ARRAY 50
MULTISET 55
DATE 91
TIME 92
TIMESTAMP 93
TIME WITH TIME ZONE 94
TIMESTAMP WITH TIME ZONE 95
INTERVAL YEAR 101
INTERVAL MONTH 102
INTERVAL DAY 103
INTERVAL HOUR 104
INTERVAL MINUTE 105
INTERVAL SECOND 106
INTERVAL YEAR TO MONTH 107
INTERVAL DAY TO HOUR 108
INTERVAL DAY TO MINUTE 109
INTERVAL DAY TO SECOND 110
INTERVAL HOUR TO MINUTE 111
INTERVAL HOUR TO SECOND 112
INTERVAL MINUTE TO SECOND | 113

Call-Level Interface specifications 97

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 34 — Codes used with concise datetime data typesin SQL/CLI

Concise Data Type Code Data Type Code Datetime Interval Code
91 9 1 (one)

92 9 2

93 9 3

94 9 4

95 9 5

Table 35 — Codes used with conciseinterval data typesin SQL/CLI

Concise Data Type Code Data Type Code Datetime | nterval Code
101 10 1 (one)
102 10 2

103 10 3

104 10 4

105 10 5

106 10 6

107 10 7

108 10 8

109 10 9

110 10 10

111 10 11

112 10 12

113 10 13

98 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.14 Other tablesassociated with CLI

Table 36 — Concise codes used with datetime data typesin SQL/CLI

Datetime I nterval Code

Concise Code

1 (one) 91
2 92
3 93
4 94
5 95

Table 37 — Concise codes used with interval data typesin SQL/CLI

Datetime Interval Code Code
1 (one) 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109
10 110
11 111
12 112
13 113

Call-Level I nterface specifications 99

CD 9075-3: 200x(E)

5.14 Other tablesassociated with CLI

Table 38 — Special parameter values

Value Name Value | Data Type

ALL CATALOGS %' CHARACTER(1)

ALL SCHEMAS ‘%' CHARACTER(1)

ALL TYPES ‘%' CHARACTER(2)

Table 39 — Column types and scopes used with SpecialColumns

Context Code | Indicates

Special Column Type 1 BEST ROWID
(one)

Scope of Row Id 0 SCOPE CURRENT ROW
(zero)

Scope of Row Id 1 SCOPE TRANSACTION
(one)

Scope of Row Id 2 SCOPE SESSION

Pseudo Column Flag 0 PSEUDO UNKNOWN
(zero)

Pseudo Column Flag 1 NOT PSEUDO
(one)

Pseudo Column Flag 2 PSEUDO

100 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

5.15 SQL/CLI datatype correspondences
This Subclause is modified by Subclause 19.5, “SQL/CLI data type correspondences”, in | SO/IEC 9075-9.

Function

Specify the SQL/CLI data type correspondences for SQL data types and host language types associated with
the required parameter mechanisms, as shown in Table 3, “Supported calling conventions of SQL/CLI routines
by language”.

In the following tables, let P be <precision>, She <scale>, L be <length>, T be <time fractional seconds preci-
sion>, and Q be <interval qualifier>.

Tables
Table 40 — SQL/CL1 datatype cor respondences for Ada
SQL DataType Ada Data Type
ARRAY None
ARRAY LOCATOR SQL_STANDARD.INT
BIGINT SQL_STANDARD.BIGINT
BINARY (L) SQL_STANDARD.CHAR, with P'LENGTH of L
BINARY LARGE OBJECT (L) SQL_STANDARD.CHAR, with P'LENGTH of L
BINARY LARGE OBJECT LOCA- SQL_STANDARD.INT
TOR
BINARY VARYING (L) SQL_STANDARD.CHAR, with P'LENGTH of L
BOOLEAN SQL_STANDARD.BOOLEAN
CHARACTER (L) SQL_STANDARD.CHAR, with P'LENGTH of L

CHARACTER LARGE OBJECT (L) | SQL_STANDARD.CHAR, with P'LENGTH of L

CHARACTER LARGE OBJECT SQL_STANDARD.INT
LOCATOR

CHARACTER VARYING (L) None

DATE None

DECIMAL(P,S) None

Call-Level I nterface specifications 101

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType

AdaData Type

DOUBLE PRECISION

SQL_STANDARD.DOUBLE_PRECISION

FLOAT(P) None
INTEGER SQL_STANDARD.INT
INTERVAL(Q) None
MULTISET None

MULTISET LOCATOR

SQL_STANDARD.INT

NUMERIC(P,9 None

REAL SQL_STANDARD.REAL

REF SQL_STANDARD.CHAR with P'LENGTH of L
ROW None

SMALLINT SQL_STANDARD.SMALLINT

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR

SQL_STANDARD.INT

Table 41 — SQL/CL1 datatype correspondences for C

SQL Data Type C DataType
ARRAY None

ARRAY LOCATOR long

BIGINT long long
BINARY (L) char, with length L

BINARY LARGE OBJECT (L)

char, with length L

BINARY LARGE OBJECT LOCA-
TOR

long

BINARY VARYING (L)

char, with length L

102 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType C DataType

BOOLEAN short

CHARACTER (L) char, with length (L+1)"‘k1
CHARACTER LARGE OBJECT (L) char, with length (L+1)*k1
CHARACTER LARGE OBJECT long

LOCATOR

CHARACTER VARYING (L) char, with length (L+1)*k1
DATE None

DECIMAL(P,S None

DOUBLE PRECISION double

FLOAT(P) None

INTEGER long

INTERVAL(Q) None

MULTISET None

MULTISET LOCATOR long

NUMERIC(P,S None

REAL float

REF char, with length L

ROW None

SMALLINT short

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR | long

Lkis the length in units of C char of the largest character in the character set associated with the SQL data type.

Call-Level I nterface specifications 103

CD 9075-3: 200x(E)

5.15 SQL/CLI datatype correspondences

Table 42 — SQL/CL1 datatype correspondences for COBOL

SQL DataType

COBOL DataType

ARRAY

None

ARRAY LOCATOR

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

BIGINT PICTURE S9(BPI) USAGE BINARY, where BPI is implemen-
tation-defined
BINARY (L) alphanumeric, with length L

BINARY LARGE OBJECT (L)

alphanumeric, with length L

BINARY LARGE OBJECT LOCA-
TOR

PICTURE S9(Pl) USAGE BINARY, where Pl is implementa-
tion-defined

BINARY VARYING (L)

alphanumeric, with length L

BOOLEAN

PICTURE X

CHARACTER (L)

alphanumeric, with length L

CHARACTER LARGE OBJECT (L)

alphanumeric, with length L

CHARACTER LARGE OBJECT
LOCATOR

PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined

CHARACTER VARYING (L) None
DATE None
DECIMAL(P,S None
DOUBLE PRECISION None
FLOAT(P) None
INTEGER PICTURE S9(PI) USAGE BINARY, where PI is implementa-
tion-defined
INTERVAL(Q) None
MULTISET None

MULTISET LOCATOR

PICTURE S9(PI1) USAGE BINARY, where PI is implementa-
tion-defined

104 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType COBOL DataType

NUMERIC(P,S) USAGE DISPLAY SIGN LEADING SEPARATE, with PIC-
TURE as specified1

REAL None

REF alphanumeric, with length L

ROW None

SMALLINT PICTURE S9(SPI) USAGE BINARY, where SPI is implemen-
tation-defined

TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE None

USER-DEFINED TYPE LOCATOR PICTURE S9(PI1) USAGE BINARY, where PI is implementa-
tion-defined

L Case:
1) If S=P, then a PICTURE with an 'S’ followed by a 'V' followed by P '9's.
2) If P>S> 0 (zero), then a PICTURE with an 'S' followed by P-S'9's followed by a 'V' followed by S'9's.

3) If S=0 (zero), then a PICTURE with an 'S’ followed by P '9's optionally followed by a 'V".

Table 43 — SQL/CLI datatype correspondences for Fortran

SQL DataType Fortran Data Type
ARRAY None

ARRAY LOCATOR INTEGER

BIGINT None

BINARY (L) CHARACTER, with length L
BINARY LARGE OBJECT (L) CHARACTER, with length L
BINARY LARGE OBJECT LOCA- INTEGER

TOR

BINARY VARYING (L) CHARACTER, with length L
BOOLEAN LOGICAL

Call-Level I nterface specifications 105

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType

Fortran Data Type

CHARACTER (L)

CHARACTER, with length L

CHARACTER LARGE OBJECT (L)

CHARACTER, with length L

CHARACTER LARGE OBJECT INTEGER
LOCATOR

CHARACTER VARYING (L) None
DATE None
DECIMAL(P,S) None

DOUBLE PRECISION

DOUBLE PRECISION

FLOAT(P) None
INTEGER INTEGER
INTERVAL(Q) None
MULTISET None
MULTISET LOCATOR INTEGER
NUMERIC(P,9 None
REAL REAL
REF CHARACTER, with length L
ROW None
SMALLINT None
TIME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCATOR | INTEGER

Table 44 — SQL/CLI data type correspondences for M

SQL DataType

M Data Type

ARRAY

None

106 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType M DataType
ARRAY LOCATOR character
BIGINT None
BINARY (L) character
BINARY LARGE OBJECT (L) character
BINARY LARGE OBJECT LOCA- character
TOR

BINARY VARYING (L) character
BOOLEAN None
CHARACTER (L) None
CHARACTER LARGE OBJECT (L) | character
CHARACTER LARGE OBJECT character

LOCATOR

CHARACTER VARYING (L)

character with maximum length L

DATE None
DECIMAL(P,9 character
DOUBLE PRECISION None
FLOAT(P) None
INTEGER character
INTERVAL(Q) None
MULTISET None
MULTISET LOCATOR character
NUMERIC(P,S character
REAL character
REF character
ROW None
SMALLINT None

Call-Level I nterface specifications 107

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType M DataType
TIME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCATOR | character

Table 45 — SQL/CLI datatype correspondences for Pascal

SQL Data Type Pascal Data Type

ARRAY None

ARRAY LOCATOR INTEGER

BIGINT None

BINARY (L) PACKED ARRAY[1..L] OF CHAR

BINARY LARGE OBJECT (L), L >1 | PACKED ARRAY[1..L] OF CHAR
(one)

BINARY LARGE OBJECT LOCA- INTEGER

TOR

BINARY VARYING (L) PACKED ARRAY([1..L] OF CHAR
BOOLEAN BOOLEAN

CHARACTER (1) CHAR

CHARACTER (L), L > 1 (one) PACKED ARRAY([1..L] OF CHAR

CHARACTER LARGE OBJECT (L), | PACKED ARRAY[1..L] OF CHAR
L > 1 (one)

CHARACTER LARGE OBJECT INTEGER
LOCATOR

CHARACTER VARYING (L) None
DATE None
DECIMAL(P,S) None
DOUBLE PRECISION None

108 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType Pascal Data Type
FLOAT(P) None

INTEGER INTEGER
INTERVAL(Q) None

MULTISET None

MULTISET LOCATOR INTEGER
NUMERIC(P,S None

REAL REAL

REF, L > 1 (one) PACKED ARRAY[1..L] OF CHAR
ROW None
SMALLINT None

TIME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCATOR INTEGER

Table 46 — SQL/CL1 datatype correspondences for PL/I

SQL DataType PL/I Data Type

ARRAY None

ARRAY LOCATOR FIXED BINARY (PI), where PI is implementation-defined
BIGINT FIXED BINARY (BPI), where BPI is implementation-defined
BINARY (L) CHARACTER(L)

BINARY LARGE OBJECT (L) CHARACTER VARYING(L)

BINARY LARGE OBJECT LOCA- FIXED BINARY (PI), where PI is implementation-defined
TOR

BINARY VARYING (L) CHARACTER(L) VARYING

BOOLEAN BIT(1)

Call-Level Interface specifications 109

CD 9075-3:200x(E)
5.15 SQL/CLI datatype correspondences

SQL DataType PL/I Data Type

CHARACTER (L) CHARACTER(L)

CHARACTER LARGE OBJECT (L) | CHARACTER VARYING(L)

CHARACTER LARGE OBJECT FIXED BINARY(PI), where Pl is implementation-defined
LOCATOR

CHARACTER VARYING (L) CHARACTER VARYING(L)

DATE None

DECIMAL(P,S) FIXED DECIMAL(P,S

DOUBLE PRECISION None

FLOAT(P) FLOAT BINARY (P)

INTEGER FIXED BINARY(PI), where Pl is implementation-defined
INTERVAL(Q) None

MULTISET None

MULTISET LOCATOR FIXED BINARY (PI), where PI is implementation-defined
NUMERIC(P,9 None

REAL None

REF CHARACTER VARYING (L)

ROW None

SMALLINT FIXED BINARY(SPI), where SPI is implementation-defined
TIME(T) None

TIMESTAMP(T) None

USER-DEFINED TYPE LOCATOR None

USER-DEFINED TYPE FIXED BINARY(PI), where Pl is implementation-defined

110 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.1 AllocConnect

6 SQL/CLI routines

This Clause is modified by Clause 20, “SQL/CLI routines”, in I SO/IEC 9075-9.

Subclause 5.1, “<CLI routine>”, defines a generic CLI routine. This Subclause describes the individual CLI
routines in alphabetical order.

For convenience, the variable <CLI name prefix> is omitted and the <CLI generic name> is used for the
descriptions. For presentation purposes (and purely arbitrarily), the routines are presented as functions rather
than as procedures.

6.1 AllocConnect

Function

Allocate an SQL-connection and assign a handle to it.

Definition

AllocConnect (
EnvironmentHandle IN INTEGER,
ConnectionHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) AllocHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE, with EH as the
value of InputHandle and with ConnectionHandle as OutputHandle.

SQL/CLI routines 111

CD 9075-3:200x(E)
6.2 AllocEnv

6.2 AllocEnv

Function

Allocate an SQL-environment and assign a handle to it.

Definition

AllocEnv (
EnvironmentHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) AllocHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE, with zero as
the value of InputHandle, and with EnvironmentHandle as OutputHandle.

112 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.3 AllocHandle

6.3 AllocHandle

Function

Allocate a resource and assign a handle to it.

Definition

AllocHandle (
HandleType IN SMALLINT,
InputHandle IN INTEGER,
OutputHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)

Let HT be the value of HandleType and let IH be the value of InputHandle.

If HT is not one of the code values in Table 14, “Codes used for SQL/CLI handle types”, then an exception
condition is raised: CLI-specific condition — invalid handle.

Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i)

If the maximum number of SQL-environments that can be allocated at one time has already
been reached, then an exception condition is raised: CLI-specific condition — limit on number
of handles exceeded. A skeleton SQL-environment is allocated and is assigned a unique value
that is returned in OutputHandle.

Case:

1)

2)

3)

If the memory requirements to manage an SQL-environment cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

NOTE 13 — No diagnostic information is generated in this case as there is no valid environment handle that
can be used in order to obtain diagnostic information.

If the resources to manage an SQL-environment cannot be allocated for implementation-
defined reasons, then an implementation-defined exception condition is raised. A skeleton
SQL-environment is allocated and is assigned a unique value that is returned in OutputHandle.

Otherwise, the resources to manage an SQL-environment are allocated and are referred to
as an allocated SQL-environment. The allocated SQL-environment is assigned a unique
value that is returned in OutputHandle.

b) If HT indicates CONNECTION HANDLE, then:

i)

If IH does not identify an allocated SQL-environment or if it identifies an allocated skeleton
SQL-environment, then OutputHandle is set to zero and an exception condition is raised: CLI-
specific condition — invalid handle.

SQL/CLI routines 113

CD 9075-3:200x(E)
6.3 AllocHandle

Let E be the allocated SQL-environment identified by IH.
The diagnostics area associated with E is emptied.

If the maximum number of SQL-connections that can be allocated at one time has already been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

Case:

1) If the memory requirements to manage an SQL-connection cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

2) If the resources to manage an SQL-connection cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined exception
condition is raised.

3) Otherwise, the resources to manage an SQL-connection are allocated and are referred to as
an allocated SQL-connection. The allocated SQL-connection is associated with E and is
assigned a unique value that is returned in OutputHandle.

c) If HT indicates STATEMENT HANDLE, then:

Vi)

vii)

viii)

If IH does not identify an allocated SQL-connection, then OutputHandle is set to zero and an
exception condition is raised: CLI-specific condition — invalid handle.

Let C be the allocated SQL-connection identified by IH.
The diagnostics area associated with C is emptied.

If there is no established SQL-connection associated with C, then OutputHandle is set to zero
and an exception condition is raised: connection exception — connection does not exist. Otherwise,
let EC be the established SQL-connection associated with C.

If the maximum number of SQL-statements that can be allocated at one time has already been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

If the memory requirements to manage an SQL-statement cannot be satisfied, then OutputHandle
is set to zero and an exception condition is raised: CLI-specific condition — memory allocation
error.

If the resources to manage an SQL-statement cannot be allocated for implementation-defined
reasons, then OutputHandle is set to zero and an implementation-defined exception condition
is raised.

The resources to manage an SQL-statement are allocated and are referred to as an allocated
QL-statement. The allocated SQL-statement is associated with C and is assigned a unique value
that is returned in OutputHandle.

The following CLI descriptor areas are automatically allocated and associated with the allocated
SQL-statement:

114 Call-Level Interface (SQL/CLI)

d)

xi)

CD 9075-3:200x(E)
6.3 AllocHandle

1) An implementation parameter descriptor.
2) An implementation row descriptor.

3) An application parameter descriptor.

4) An application row descriptor.

For each of these descriptor areas, the ALLOC_TYPE field is set to indicate AUTOMATIC.
For each of these descriptor areas, fields with non-blank entries in Table 24, “SQL/CLI
descriptor field default values”, are set to the specified default values. All other fields in the CLI
item descriptor areas are initially undefined.

The automatically allocated application parameter descriptor becomes the current application
parameter descriptor for the allocated SQL-statement and the automatically allocated application
row descriptor becomes the current application row descriptor for the allocated SQL-statement.

If HT indicates DESCRIPTOR HANDLE, then:

Vi)

vii)

If IH does not identify an allocated SQL-connection then OutputHandle is set to zero and an
exception condition is raised: CLI-specific condition — invalid handle.

Let C be the allocated SQL-connection identified by IH.
The diagnostics area associated with C is emptied.

If there is no established SQL-connection associated with C, then OutputHandle is set to zero
and an exception condition is raised: connection exception — connection does not exist. Otherwise,
let EC be the established SQL-connection associated with C.

If the maximum number of CLI descriptor areas that can be allocated at one time has already
been reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set
connection”, are applied with EC as dormant SQL-connection.

Case:

1) If the memory requirements to manage a CLI descriptor area cannot be satisfied, then Out-
putHandle is set to zero and an exception condition is raised: CLI-specific condition —
memory allocation error.

2) If the resources to manage a CLI descriptor area cannot be allocated for implementation-
defined reasons, then OutputHandle is set to zero and an implementation-defined exception
condition is raised.

3) Otherwise, the resources to manage a CLI descriptor area are allocated and are referred to
as an allocated CLI descriptor area. The allocated CLI descriptor area is associated with C
and is assigned a unique value that is returned in OutputHandle. The ALLOC_TYPE field
of the allocated CLI descriptor area is set to indicate USER. Other fields of the allocated
CLI descriptor area are set to the default values for an ARD specified in Table 24, “SQL/CLI
descriptor field default values”. Fields in the CLI item descriptor areas not set to a default
value are initially undefined.

SQL/CLI routines 115

CD 9075-3:200x(E)
6.4 AllocStmt

6.4 AllocStmt

Function

Allocate an SQL-statement and assign a handle to it.

Definition

AllocStmt (
ConnectionHandle IN INTEGER,
StatementHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) AllocHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE, with CH as the
value of InputHandle, and with StatementHandle as OutputHandle.

116 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.5 BindCol

6.5 BindCoal

Function

Describe a target specification or array of target specifications.

Definition

BindCol (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
TargetType IN SMALLINT,
TargetValue DEFOUT ANY,
BufferLength IN INTEGER,
StrLen_or_Ind DEFOUT INTEGER)

RETURNS SMALLINT

General Rules

1)
2)
3)

4)
5)

6)

7)
8)

9)

Let She the allocated SQL-statement identified by StatementHandle.
Let HV be the value of the handle of the current application row descriptor for S

Let ARD be the allocated CLI descriptor area identified by HV and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

Let CN be the value of ColumnNumber.

If CNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

If CN is greater than N, then
Case:

a) If the memory requirements to manage the larger ARD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of ARD is set to CN and the COUNT field of ARD is
incremented by 1 (one).

Let TT be the value of TargetType.

Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondences table as the SQL
data type column and the host data type column.

If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) TTdoes not indicate DEFAULT and is not one of the code values in Table 8, “Codes used for application
data types in SQL/CLI”.

SQL/CLI routines 117

CD 9075-3:200x(E)
6.5 BindCol

b) TT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

10) Let BL be the value of BufferLength.

11) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

12) Let IDA be the item descriptor area of ARD specified by CN.

13) If an exception condition is raised in any of the following General Rules, then the TYPE, OCTET_LENGTH,
LENGTH, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields of IDA
are set to implementation-dependent values and the value of COUNT for ARD is unchanged.

14) The data type of the <target specification> described by IDA is set to TT.
15) The length in octets of the <target specification> described by IDA is set to BL.

16) The length in characters or positions of the <target specification> described by IDA is set to the maximum
number of characters or positions that may be represented by the data type TT.

17) The address of the host variable or array of host variables that is to receive a value or values for the <target
specification> or <target specification>s described by IDA is set to the address of TargetValue. If TargetValue
is a null pointer, then the address is set to O (zero).

18) The address of the <indicator variable> or array of <indicator variable>s associated with the host variable
or host variables addressed by the DATA_POINTER field of IDA is set to the address of StrLen_or_Ind.

19) The address of the host variable or array of host variables that is to receive the returned length (in characters)
of the <target specification> or <target specification>s described by IDA is set to the address of
StrLen_or_Ind.

20) Restrictions on the differences allowed between ARD and IRD are implementation-defined, except as
specified in the General Rules of Subclause 5.8, “Implicit FETCH USING clause”, and the General Rules
of Subclause 6.30, “GetData”.

118 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.6 BindParameter

6.6 BindParameter

Function

Describe a dynamic parameter specification and its value.

Definition

BindParameter (
StatementHandle IN INTEGER,
ParameterNumber IN SMALLINT,
InputOutputMode IN SMALLINT,
ValueType IN SMALLINT,
ParameterType IN SMALLINT,
ColumnSize IN INTEGER,
DecimalDigits IN SMALLINT,
ParameterValue DEF ANY,
BufferLength IN INTEGER,
StrLen_or_Ind DEF INTEGER)

RETURNS SMALLINT

General Rules

1)
2)
3)

4)
5)

6)
7)

8)
9)

Let She the allocated SQL-statement identified by StatementHandle.
Let HV be the value of the handle of the current application parameter descriptor for S

Let APD be the allocated CLI descriptor area identified by HV and let N2 be the value of the
TOP_LEVEL_COUNT field of APD.

Let PN be the value of ParameterNumber.

If PN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descriptor
index.

Let IOM be the value of InputOutputMode.

If IOM is not one of the code values in Table 11, “Codes associated with <parameter mode> in SQL/CLI”,
then an exception condition is raised: CLI-specific condition — invalid parameter mode.

Let VT be the value of ValueType.

Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.15, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

10) If any of the following are true, then an exception condition is raised: CLI-specific condition — invalid

data type in application descriptor.

a) VT doesnotindicate DEFAULT and is not one of the code values in Table 8, “Codes used for application
data types in SQL/CLI".

SQL/CLI routines 119

CD 9075-3:200x(E)
6.6 BindParameter

b) VT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

11) Let PT be the value of ParameterType.

12) If PT is not one of the code values in Table 33, “Codes used for concise data types”, then an exception
condition is raised: CLI-specific condition — invalid data type.

13) Let IPD be the implementation parameter descriptor associated with Sand let N1 be the value of the
TOP_LEVEL_COUNT field of IPD.

14) If PN is greater than N1, then
Case:

a) If the memory requirements to manage the larger IPD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of IPD is set to PN and the COUNT field of APD is
incremented by 1 (one).

15) If PN is greater than N2, then
Case:

a) If the memory requirements to manage the larger APD cannot be satisfied, then an exception condition
is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the TOP_LEVEL_COUNT field of APD is set to PN and the COUNT field of APD is
incremented by 1 (one).

16) Let IDA1 be the item descriptor area of IPD specified by PN.

17) Let CSbe the value of ColumnSize, let DD be the value of DecimalDigits, and let BL be the value of
BufferLength.

18) Case:

a) If PTisone of the values listed in Table 34, “Codes used with concise datetime data types in SQL/CLI”,
then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a code
shown in the Data Type Code column of Table 34, “Codes used with concise datetime data types
in SQL/CLI”, indicating the concise data type code.

i) The datetime interval code of the <dynamic parameter specification> described by IDAL is set
to a code shown in the Datetime Interval Code column in Table 34, “Codes used with concise
datetime data types in SQL/CLI”, indicating the concise data type code.

i) The length (in positions) of the <dynamic parameter specification> described by IDAL is set to
CSs

iv) Case:

1) If the datetime interval code of the <dynamic parameter specification> indicates DATE,
then the time fractional seconds precision of the <dynamic parameter specification> described
by IDAL is set to zero.

120 Call-Level Interface (SQL/CLI)

b)

CD 9075-3:200x(E)
6.6 BindParameter

2) Otherwise, the time fractional seconds precision of the <dynamic parameter specification>
described by IDA1 is set to DD.

If PT is one of the values listed in Table 35, “Codes used with concise interval data types in SQL/CLI”,
then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a code
shown in the Data Type Code column of Table 35, “Codes used with concise interval data types
in SQL/CLI”, indicating the concise data type code.

i) The datetime interval code of the <dynamic parameter specification> described by IDAL is set
to a code shown in the Datetime Interval Code column in Table 35, “Codes used with concise
interval data types in SQL/CLI”, indicating the concise data type code. Let DIC be that code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDAL is set to
CSs

iv) Let LSbe 0 (zero).

V) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer,
and BL is greater than zero, then:

1) Let PV be the value of ParameterValue.
2) Let FC be the value of

SUBSTR (PV FROM 1 FOR 1)

3) If FCis <plus sign> or <minus sign>, then let LSbe 1 (one).
vi) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval fractional seconds precision of the <dynamic parameter specifi-
cation> described by IDALis setto DD. If DD is 0 (zero), then let DP be 0 (zero); otherwise,
let DP be 1 (one).

2) Otherwise, the interval fractional seconds precision of the <dynamic parameter specification>
described by IDA1 is set to zero.

vii) Case:

1) If DIC indicates YEAR TO MONTH, DAY TO HOUR, HOUR TO MINUTE or MINUTE
TO SECOND, then let IL be 3.

2) If DIC indicates DAY TO MINUTE or HOUR TO SECOND, then let IL be 6.
3) If DIC indicates DAY TO SECOND, then let IL be 9.
4) Otherwise, let IL be zero.

viii) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval leading field precision of the <dynamic parameter specification>
described by IDAL is set to CS-IL-DD-DP-LS

SQL/CLI routines 121

CD 9075-3:200x(E)
6.6 BindParameter

2) Otherwise, the interval leading field precision of the <dynamic parameter specification>
described by IDA1 is set to CS-IL-LS

c) Otherwise:
i) The data type of the <dynamic parameter specification> described by IDA1 is set to PT.

i) If PT indicates a character string type, then the length (in characters) of the <dynamic parameter
specification> described by IDAL is set to CS.

iii) If PT indicates a numeric type, then the precision of the <dynamic parameter specification>
described by IDA1 is set to CS

iv) If PTindicates a numeric type, then the scale of the <dynamic parameter specification> described
by IDAL is set to DD.

19) Let IDAZ2 be the item descriptor area of APD specified by PN.
20) If an exception condition is raised in any of the following General Rules, then:

a) The TYPE, LENGTH, PRECISION, and SCALE fields of IDA1 are set to implementation-dependent
values and the values of the TOP_LEVEL_COUNT and COUNT fields of IPD are unchanged.

b) The TYPE, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields
of IDA2 are set to implementation-dependent values and the values of the TOP_LEVEL_COUNT and
COUNT fields of APD are unchanged.

21) The parameter mode of the <dynamic parameter specification> described by IDA2 is set to |OM.
22) The data type of the <dynamic parameter specification> described by IDA2 is set to VT.

23) The address of the host variable that is to provide a value for the <dynamic parameter specification> value
described by IDA2 is set to the address of ParameterValue. If ParameterValue is a null pointer, then the
address is set to 0 (zero).

24) The address of the <indicator variable> associated with the host variable addressed by the DATA_POINTER
field of IDAZ2 is set to the address of StrLen_or_Ind.

25) The address of the host variable that is to define the length (in octets) of the <dynamic parameter specifica-
tion> value described by IDA2 is set to the address of StrLen_or_Ind.

26) If IOM is PARAM MODE OUT or PARAM MODE INOUT and BL is not greater than zero, then an
exception condition is raised: CLI-specific condition — invalid string length or buffer length.

27) The length in octets of the <dynamic parameter specification> value described by IDAZ2 is set to BL.

28) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer, and BL
is greater than O (zero), then let PV be the value of the <dynamic parameter specification> value described
by IDA2.

29) Restrictions on the differences allowed between APD and IPD are implementation-defined, except as
specified in the General Rules of Subclause 5.6, “Implicit EXECUTE USING and OPEN USING clauses”,
Subclause 5.7, “Implicit CALL USING clause”, and the General Rules of Subclause 6.49, “ParamData”.

122 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.7 Cance

6.7 Cancd

Function

Attempt to cancel execution of a CLI routine.

Definition

Cancel (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let Shbe the allocated SQL-statement identified by StatementHandle.
2) Case:

a)

b)

If there is a CLI routine concurrently operating on S then:

vi)

vii)

Let RN be the routine name of the concurrent CLI routine.
Let C be the allocated SQL-connection with which Sis associated.

Let EC be the established SQL-connection associated with C and let SSbhe the SQL-server
associated with EC.

SSis requested to cancel the execution of RN.

If SSrejects the cancellation request, then an exception condition is raised: CLI-specific condition
— server declined the cancellation request.

If SSaccepts the cancellation request, then a completion condition is raised: successful completion.

NOTE 14 — Acceptance of the request does not guarantee that the execution of RN will be cancelled.

If SSsucceeds in canceling the execution of RN, then an exception condition is raised for RN:
CLI-specific condition — operation canceled.

NOTE 15 — Canceling the execution of RN does not destroy any diagnostic information already generated by its
execution.

NOTE 16 — The method of passing control between concurrently operating programs is implementation-dependent.

If there is a deferred parameter number associated with S then:

i) The diagnostics area associated with Sis emptied.

i) The deferred parameter number is removed from association with S

iii) Any statement source associated with Sis removed from association with S
Otherwise:

i) The diagnostics area associated with Sis emptied.

SQL/CLI routines 123

CD 9075-3:200x(E)
6.7 Cancel

i) A completion condition is raised: successful completion.

124 Call-Leve Interface (SQL/CLI)

CD 9075-3:200x(E)
6.8 CloseCursor

6.8 CloseCursor

Function

Close a cursor.
Definition

CloseCursor (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let Shbe the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S then an exception condition is raised: CLI-specific
condition — function sequence error.

3) Case:
a) If there is no open cursor associated with S then an exception condition is raised: invalid cursor state.
b) Otherwise:

i) The open cursor associated with Sis placed in the closed state and its copy of the select source
is destroyed.

i) Any fetched row associated with Sis removed from association with S

SQL/CLI routines 125

CD 9075-3:200x(E)
6.9 ColAttribute

6.9 ColAttribute

Function

Get a column attribute.

Definition

ColAttribute (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
Fieldldentifier IN SMALLINT,
CharacterAttribute OUT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength OUT SMALLINT,

NumericAttribute OUT INTEGER)
RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1)
2)

3)

4)
5)

6)
7)

8)

9)

Let She the allocated SQL-statement identified by StatementHandle.

If there is no prepared or executed statement associated with S then an exception condition is raised: CLI-
specific condition — function sequence error.

Let IRD be the implementation row descriptor associated with Sand let N be the value of the
TOP_LEVEL_COUNT field of IRD.

Let FI be the value of Fieldldentifier.

If FI is not one of the code values in Table 21, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition — invalid descriptor field identifier.

Let CN be the value of ColumnNumber.

Let TYPE be the value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

Let FDT be the value of the Data Type column in the row of Table 6, “Fields in SQL/CLI row and param-
eter descriptor areas”, whose Field column contains the value of the Field column in the row of Table 21,
“Codes used for SQL/CLI descriptor fields”, that contains FI.

If TYPE is 'ITEM', then:

a) If Nis zero, then an exception condition is raised: dynamic SQL error — prepared statement not a
cursor specification.

b) If CNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

126 Call-Level Interface (SQL/CLI)

CD 9075-3:200x(E)
6.9 ColAttribute

c) If CNis greater than N, then a completion condition is raised: no data.

d) Let IDA be the item descriptor area of IRD specified by the CN-th descriptor area in IRD for which
LEVEL is 0 (zero).

e) Let DT and DIC be the values of the TYPE and DATETIME_INTERVAL_CODE fields, respectively,
for IDA.

10) If TYPE is 'HEADER, then:

a) If CNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

b) If CNis greater than N, then a completion condition is raised: no data.
c) LetCN be 0 (zero).
11) Let DH be the handle that identifies IRD.

12) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which LEVEL is
0 (zero).

Case:

a) IfFDT indicates character string, then let the information be retrieved from IRD by implicitly executing
GetDescField as follows:

GetDescField (DH, R, FI,
CharacterAttribute, BufferLength, StringLength)

b) Otherwise,
Case:
i) If FI indicates TYPE, then

Case:

1) If DT indicates a <datetime type>, then NumericAttribute is set to the concise