SC32 NOO0O1

ISO Final Committe e Draft (FCD)
Databas e Languag e SQL — Part 1. SQL/Framework
«Part 1»

October 1997

Contents Page

ForewWord . . . e vii
INErOdUCTION . . . o ix
1 SO P . o 1
2 Normative referenCes 3
3 Definitions and use of terms 5
31 DefiNitioNS 5
3.1.1 Definitions provided in thisstandard 5
3.2 UsSe Of 1BImMIS 6
3.3 Informative elements 6
4 CONCEPES . . .o 7
4.1 Caveal 7
4.2 SQL-environments and their components 7
4.2.1 SOL-BNVIFONMENTS . . . o 7
4.2.2 SOL-a0ENtS . .. 7
4.2.3 SQL-implementations e 7
4.2.3.1 SOL-CHENTS . .. o 8
4.2.3.2 SOL-SEIVEIS . . oo e 8
4.2.4 SQL-client modules 8
4.2.5 Authorization identifiers 8
4.2.6 Catalogs and schemas 8
4.2.6.1 Catalogsot e 9
4.2.6.2 SQL-SChEemMaAs e 9
4.2.6.3 The Information Schema 9
4.2.6.4 The Definition Schema 9
427 SQL-datao 9
4.3 Tables . . . 10
4.4 SQL data tYPeS . . .ot 10
4.4.1 General e 10
4,42 Thenull value e 11
4.4.3 Predefined atomiC typesS oot 11
4.4.3.1 NUMEIIC BYPES . . ottt e e e e e e 11
4.4.3.2 StriNG TYPES . . o ottt 11
4.4.3.3 B0Olean type 11
4.4.3.4 Datetime 1Y PeS . . o o ot 12
4.4.3.5 Interval typPeS . . oo 12
4.4.3.6 ReferenCe tYPeS . . . oo 12

ii ISO/IEC FCD 9075-1:199x (E)

444
4441
4442
4.4.4.3
445
4.5
451
45.2
453
4.6
46.1
4.6.2
46.2.1
4.6.2.2
4.6.2.3
4.6.3
46.3.1
4.6.3.2
46.4
46.4.1
4.6.4.2
4.6.5
4.6.6
4.6.7
4.6.7.1
4.6.7.2
46.7.3
4.6.7.4
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.7
4.7.1
4.7.2
4.8
4.8.1
4.8.2
4821
4.8.2.2
4.8.2.3
4824
4.8.3

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Predefined composite types 12
ColleCtioN By PES . . . ot 12
ROW By DS . .« ot ot i e 12
Flelds . .o 13
LOCatOr BYPES . . o o 13
Sites and operations on them 13
SIEES . o o 13
Assignment and mutation 14
NUullability . .. 14
SQL-schema objects 14
General 14
Descriptors relating to character sets i 15
Character SEtSo 15
Collationso 15
Translations 15
Domains and their COMpoNents e 15
DOMaAINS . . o 15
Domain Cconstraints 15
Abstract data types and their components 16
Abstract data typPesSot e 16
AT DULES . . . o 16
DIStINCE Ty PES . . . ot ot 16
Named roW tYPEeS o 16
Base tables and their components 16
Base tables 16
COlUMNS . . 17
Table cONStraints 17
LI 0 T 1= 17
View definitions 17
ASSEITIONS . . oo 18
SQL-server modules (defined in ISO/IEC 9075-4, SQL/PSM) 18
Schema FoUtINeS 18
PriVIIEgeS . o o 18
ROIES . .o 18
Integrity constraints and constraint checking, 18
Constraint checking o 18
Determinism and constraints 19
Communicating between the SQL-agent and the SQL-implementation 19
HoSt languages o 19
Parameter passing and data type cOrreSpondences 20
General 20
Data type COrreSPONTENCES o . ottt et e e e e e 20
Status parameters 20
Indicator parameters 20
Descriptor areas (defined in ISO/IEC 9075-5) i 20

Table of Contents iii

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

4.8.4 Diagnostic information 21
4.8.5 SOQL-TransaClions it 21
4.9 MOUIES . . . 21
410 ROULINES . . . oo 22
4.10.1 General 22
4.10.2 Identity fTUNCLIONS e 22
4.10.3 BuUIlt-in fUNCLIONS 22
411 SQL-Statements 23
4.11.1 Classes of SQL-statements. 23
4.11.2 SQL-statements classified by function 23
5 The parts of ISO/IEC 9075 25
51 OVEBIVIBW . o o e e 25
5.2 ISO/IEC 9075-1: Framework (SQL/Framework) 25
5.3 ISO/IEC 9075-2: Foundation (SQL/Foundation). 25
5.3.1 Data types specified in ISO/IEC 9075-2 i e 25
5.3.2 Tables. . . . 26
5.3.3 SQL-statements specified in ISO/IEC 9075-2 it e e e 26
5.4 ISO/IEC 9075-3: Call Level Interface (SQL/CLI) e 26
5.5 ISO/IEC 9075-4: Persistent Stored Modules (SQL/PSM) 27
5.5.1 SQL-statements specified in ISO/IEC 9075-4 27
5.6 ISO/IEC 9075-5: Host Language Bindings (SQL/Bindings) 28
5.6.1 SQL-session facilities 28
5.6.2 Dynamic SQL 28
5.6.3 Embedded SQL 28
5.6.4 Directinvocation of SOQL 28
5.6.5 SQL-statements specified in ISO/IEC 9075-5. e 29
5.6.5.1 Additional functional classes of SQL-statements 29
5.7 ISO/IEC 9075-6: XA Specialization (SQL/Transaction) 29
5.8 ISO/IEC 9075-7: Temporal (SQL/Temporal) 29
6 Notation and conventions used in other parts of ISO/IEC9075.................. 31
6.1 NOTALION . . . o 31
6.2 CONVENTIONS . . . o 32
6.2.1 Specification of syntactic elements 32
6.2.2 Specification of the Information Schema 33
6.2.3 Use Of teIrmsS 33
6.2.3.1 EXCEPUIONS . . oot 33
6.2.3.2 Syntactic containment e 33
6.2.3.3 Terms denoting rule requUIremMeNnts i e e 34
6.2.3.4 Rule evaluation order. 35
6.2.3.5 Conditional rules 35
6.2.3.6 Syntactic sUbStItULION 36
6.2.3.7 Other terms 36
6.2.4 DESCIIPIONS . . o o ottt e e e 37
6.2.5 Relationships of incremental parts to ISO/IEC 9075-2, Foundation 38
iv ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

6.2.5.1 New and modified Clauses, Subclauses, and Annexesc.c.uiiiin.... 38
6.2.5.2 New and modified Format items 38
6.2.5.3 New and modified paragraphsand rules 39
6.2.5.4 New and modified tables 39
6.2.6 Index typography 40
6.3 Object identifier for Database Language SQL 40
7 Annexes to the parts of ISO/IEC 9075 e 43
7.1 Implementation-defined elements 43
7.2 Implementation-dependent elements 43
7.3 Deprecated featUres 43
7.4 Incompatibilities with previous Versions i 43
8 CoNfOrMAaNCe 45
8.1 Requirements for SQL-implementations 45
8.1.1 Partsand packages 45
8.1.2 Functionality 45
8.1.3 Additional features 45
8.1.4 Claims of conformance 46
8.2 Requirements for SQL applications 46
8.2.1 INtroduCtion e 46
8.2.2 REQUITEMENTS . . . ot e e 46
8.2.3 Claims of conformance 47
Annex A Maintenance and interpretation of SQL 49
Annex B SQL Feature TaxonOmy e e e 51
AnNnex C SQL Packages. 65
C1 Enhanced datetime facilities 65
Cc.2 Enhanced integrity management e 65
C.3 OLAP facilitieso 66
C4 PO L 66
C5 L 66
C.6 BasiC ObJeCt SUPPOIT o 66
Cc.7 Enhanced object SUPPOIt 67
INAEX . Index1

Table of Contents v

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

TABLES
Table Page
1 Relationships of routine characteristics 22
2 SQL/Foundation feature taxonomyttt 52
3 SQL/Bindings feature taxonomyt 64
vi ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of 1SO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. 1SO and IEC technical committees collaborate in fields of mutual interest. Other interna-
tional organizations, governmental and non-governmental, in liaison with 1SO and IEC, also take
part in the work.

In the field of information technology, I1ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circu-
lated to national bodies for voting. Publication as an International Standard requires approval by
at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9075 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology.

ISO/IEC 9075 consists of the following parts, under the general title Information technology —
Database languages — SQL.:

— Part 1: Framework (SQL/Framework) describes the fundamental concepts on which specifica-
tions in other parts of ISO/IEC 9075 are based. It also defines terms, notations and conventions
used in ISO/IEC 9075. It specifies general requirements for conformance.

— Part 2: Foundation (SQL/Foundation) specifies the fundamentals of SQL.

— Part 3: Call-Level Interface (SQL/CLI) specifies an interface to SQL that may be used by an
application program.

— Part 4: Persistent Stored Modules (SQL/PSM) specifies control structures that may be used to
define SQL-routines, and the modules that may contain them.

— Part 5: Host Language Bindings (SQL/Bindings) specifies how SQL-statements may be embed-
ded in programs in a host programming language, and how SQL-statements may be prepared
for execution and executed.

— Part 6: XA Specialization (SQL/Transaction) specifies how SQL may be used with a standard
conforming transaction manager.

— Part 7: Temporal (SQL/Temporal) specifies facilities for defining and manipulating temporal
data.

Parts other than part 1 specify requirements, and all are dependent on part 1. Parts other than
parts 1 and 2 are all dependent on part 2.

Foreword vii

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Introduction

The organization of ISO/IEC 9075-1 is as follows:

1)

2)

3)

4)
5)

6)
7

8)

9)

10)

11)

Clause 1, “Scope”, specifies the scope of ISO/IEC 9075-1.

Clause 2, “Normative references”, identifies additional standards that, through reference in this
International Standard, constitute provisions of ISO/IEC 9075-1.

Clause 3, “Definitions and use of terms”, defines terms used in this and other parts of ISO/IEC
9075.

Clause 4, “Concepts”, describes the concepts used in ISO/IEC 9075.

Clause 5, summarises the content of each of the parts of ISO/IEC 9075, in terms of the concepts
described in Clause 4, “Concepts”.

Clause 6, defines notation and conventions used in other parts of ISO/IEC 9075.
Clause 7, describes the content of annexes of other parts of ISO/IEC 9075.

Clause 8, specifies requirements that apply to claims of conformance to all or some of the parts
of ISO/IEC 9075.

Annex A, is an informative Annex. describes the formal procedures for maintenance and
interpretation of ISO/IEC 9075.

Annex B, “SQL Feature Taxonomy”, is an informative Annex. It identifies features of the SQL
language specified in this part of ISO/IEC 9075 by a numeric identifier and a short descriptive
name. This taxonomy is used to specify conformance to Core SQL and may be used to develop
other profiles involving the SQL language.

Annex C, “SQL Packages”, is an informative Annex. It specifies several packages of SQL
language features (as identified in Annex B, “SQL Feature Taxonomy”) to which SQL-
implementations may claim conformance.

In the text of ISO/IEC 9075-1, Clauses begin a new odd-numbered page. Any resulting blank space
is not significant.

Introduction ix

Information technology — Database languages — SQL —
Part 1. SQL/Framework

1 Scope

ISO/IEC 9075-1 describes the conceptual framework used in other parts of ISO/IEC 9075 to
specify the grammar of SQL, and the result of processing statements in that language by an
SQL-implementation.

ISO/IEC 9075-1 also defines terms and notation used in the other parts of ISO/IEC 9075.

NOTE 1 — The coordination of the development of existing and future standards for the management of
persistent data in information systems is described by the Reference Model of Data Management (ISO/IEC

10032:1995).

Scope

1

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

2 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

2 Normative references

The following standards contain provisions that, through reference in this text, constitute provisions
of ISO/IEC 9075-1. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on ISO/IEC 9075-1 are encouraged to investi-
gate the possibility of applying the most recent editions of the standards listed below. Members of
IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 9075-2:199x%, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

ISO/IEC 9075-3:199%, Information technology — Database languages — SQL — Part 3: Call-
level interface (SQL/CLI).

ISO/IEC 9075-4:199x%, Information technology — Database languages — SQL — Part 4:
Persistent stored modules (SQL/PSM).

ISO/IEC 9075-5:199x, Information technology — Database languages — SQL — Part 5: Host
language bindings (SQL/Bindings).

ISO/IEC 9075-6:199x%, Information technology — Database languages — SQL — Part 6: XA
Specialization (SQL/Transaction).

ISO/IEC 9075-7:199x%, Information technology — Database languages — SQL — Part 7:
Temporal (SQL/Temporal).

Normative references 3

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

4 1SO/IEC FCD 9075-1:199x (E)

3

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Definitions and use of terms

3.1 Definitions

For the purposes of ISO/IEC 9075-1, the following definitions apply.

3.1.1 Definitions provided in this standard

In ISO/IEC 9075-1, the definition of a verb defines every voice, mood, and tense of that verb.
ISO/IEC 9075-1 defines the following terms, which are also used in other parts of ISO/IEC 9075:

a)

b)

c)
d)

e)

9)

h)

)

k)

m)

atomic: Incapable of being subdivided.

compilation unit: A segment of executable code, possibly consisting of one or more subpro-
grams.

data type: A set of representable values.

descriptor: A coded description of an SQL object. It includes all of the information about the
object that a conforming SQL-implementation requires.

implementation-defined: Possibly differing between SQL-implementations, but specified by
the implementor for each particular SQL-implementation.

implementation-dependent: Possibly differing between SQL-implementations, but not spec-
ified by ISO/IEC 9075, and not required to be specified by the implementor for any particular
SQL-implementations.

instance (of a value): A physical representation of a value. Each instance is at exactly one
site. An instance has a data type that is the data type of its value.

null value: A special value that is used to indicate the absence of any data value.

object (as in “x object”): Any thing. An x object is a component of, or is otherwise associated
with, some x, and cannot exist independently of that x. For example, an SQL object is an object
that exists only in the context of SQL; an SQL-schema object is an object that exists in some
SQL-schema.

persistent: Continuing to exist indefinitely, until destroyed deliberately. Referential and
cascaded actions are regarded as deliberate. Actions incidental to the termination of an SQL-
transaction or an SQL-session are not regarded as deliberate.

property (of an object): An attribute, quality or characteristic of the object.

row: A sequence of (field name, value) pairs, the data type of each value being specified by the
row type.

scope (of a standard): The clause in the standard that defines the subject of the standard and
the aspects covered, thereby indicating the limits of applicability of the standard or of particular
parts of it.

Definitions and use of terms 5

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
3.1 Definitions

n) scope (of a declaration): That part of an SQL-statement in which the object declared can be
referenced.

0) sequence: An ordered collection of objects that are not necessarily distinct.
p) site: A place occupied by an instance of a value of some specified data type (or subtype of it).
q) SQL-environment: The context in which SQL-data exists, and SQL-statements are executed.

r) SQL-implementation: A processor that processes SQL-statements. A conforming SQL-
implementation is an SQL-implementation that conforms to

s) SQL-statement: A string of characters that conforms, or purports to conform, to the Format
and Syntax Rules specified in the parts of ISO/IEC 9075.

t) table: A table has an ordered collection of one or more columns and an unordered collection of
zero or more rows. Each column has a name and a data type. Each row has, for each column,
exactly one value in the data type of that column.

3.2 Use of terms

The concepts on which ISO/IEC 9075 is based are described in terms of objects, in the usual sense
of the word.

Every object has properties, in the usual sense of the word (sometimes called characteristics or
attributes), usually including a name which is unique within some class of object. Some objects
are dependent on other objects. If x is an object, then the objects dependent on it are known as x
objects. Thus the term “SQL object” denotes some object that exists only in the context of SQL.

Many x objects might be considered to be components of the x on which they depend.
If an x ceases to exist, then every x object dependent on that x also ceases to exist.

The representation of an x is known as an x descriptor or an x state, depending on the nature of x’s.
The descriptor or state of an x represents everything that needs to be known about the x. See also
Subclause 6.2.4, “Descriptors”, below.

3.3 Informative elements

In several places in the body of this International Standard, informative notes appear. For example:

NOTE 2 — This is an example of a note.
Those notes do not belong to the normative part of this International Standard and conformance to
material specified in those notes shall not be claimed.

6 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

4 Concepts

4.1 Caveat

This clause describes concepts that are, for the most part, specified precisely in other parts of
ISO/IEC 9075. In any case of discrepancy, the specification in the other part is to be presumed
correct.

4.2 SQL-environments and their components

4.2.1 SQL-environments
An SQL-environment comprises:
— One SQL-agent.

— One SQL-implementation.

— Zero or more SQL-client modules, containing externally-invoked procedures available to the
SQL-agent.

— Zero or more authorization identifiers.
— Zero or more catalogs, each of which contains one or more SQL-schemas.

— The sites, principally base tables, that contain SQL-data, as described by the contents of the
schemas. This data may be thought of as “the database”, but the term is not used in ISO/IEC
9075, because it has different meanings in the general context.

4.2.2 SQL-agents

An SQL-agent is that which causes the execution of SQL-statements. In the case of the di-

rect invocation of SQL (see Subclause 5.6.4, “Direct invocation of SQL”), it is implementation-
defined. Alternatively, it may consist of one or more compilation units that, when executed, invoke
externally-invoked procedures in an SQL-client module.

4.2.3 SQL-implementations

An SQL-implementation is a processor that executes SQL-statements, as required by the SQL-
agent. An SQL-implementation, as perceived by the SQL-agent, includes one SQL-client, to which
that SQL-agent is bound, and one or more SQL-servers. An SQL-implementation can conform to
ISO/IEC 9075 without allowing more than one SQL-server to exist in an SQL-environment.

Because an SQL-implementation can be specified only in terms of how it executes SQL-statements,
the concept denotes an installed instance of some software (database management system). ISO/IEC
9075 does not distinguish between features of the SQL-implementation that are determined by the
software vendor and those determined by the installer.

Concepts 7

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.2 SQL-environments and their components

ISO/IEC 9075 recognizes that SQL-client and SQL-server software may have been be obtained
from different vendors; it does not specify the method of communication between SQL-client and
SQL-server.

4.2.3.1 SQL-clients

An SQL-client is a processor, perceived by the SQL-agent as part of the SQL-implementation, that
establishes SQL-connections between itself and SQL-servers and maintains a diagnostics area and
other state data relating to interactions between itself and the SQL-agent.

4.2.3.2 SQL-servers

Each SQL-server is a processor, perceived by the SQL-agent as part of the SQL-implementation,
that manages SQL-data.

Each SQL-server:

— Manages the SQL-session taking place over the SQL-connection between itself and the SQL-
client.

— Executes SQL-statements received from the SQL-client, receiving and sending data as required.

— Maintains the state of the SQL-session, including the authorization identifier and certain
session defaults.

4.2.4 SQL-client modules

An SQL-client module is a module (g.v.) that is explicitly created and dropped by implementation-
defined mechanisms.

An SQL-client module does not necessarily have a name; if it does, the permitted names are
implementation-defined.

An SQL-client module contains zero or more externally-invoked procedures.

Exactly one SQL-client module is associated with an SQL-agent at any time. However, in the case
of either direct binding style or SQL/CLI, this may be a default SQL-client module whose existence
is not apparent to the user.

4.2.5 Authorization identifiers
An authorization identifier represents a user. The means of creating and destroying authorization

identifiers, and their mapping to real users, is not specified by ISO/IEC 9075.

4.2.6 Catalogs and schemas

8 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.2 SQL-environments and their components

4.2.6.1 Catalogs

A catalog is a named collection of SQL-schemas in an SQL-environment. The one or more catalogs
available to an SQL-session are known as a cluster, and contain the descriptors that describe all the
SQL-data accessible through that SQL-server.

The mechanisms for creating and destroying catalogs are implementation-defined.

4,2.6.2 SQL-schemas

An SQL-schema, often referred to simply as a schema, is a persistent, named collection of descrip-
tors that describe SQL-data. Any object whose descriptor is in some SQL-schema is known as an
SQL-schema object.

A schema, the schema objects in it, and the SQL-data described by them are said to be owned by
the authorization identifier associated with the schema.

SQL-schemas are created and destroyed by execution of SQL-schema statements (or by implementation-
defined mechanisms).

4.2.6.3 The Information Schema

Every catalog contains an SQL-schema with the name INFORMATION_SCHEMA that includes
the descriptors of a number of schema objects, mostly view definitions, that together allow every
descriptor in that catalog to be accessed, but not changed, as though it was SQL-data.

The data available through the views in an Information Schema includes the descriptors of the
Information Schema itself. It does not include the schema objects or base tables of the Definition
Schema (see Subclause 4.2.6.4, “The Definition Schema”).

Each Information Schema view is so specified that a given user can access only those rows of the
view that represent descriptors on which that user has privileges.

4.2.6.4 The Definition Schema

The definition schema is a fictitious schema with the name DEFINITION_SCHEMA, if it were to
exist, the SQL-data in its base tables would describe all the SQL-data available to an SQL-server.
ISO/IEC 9075 defines it only in order to use it as the basis for the views of the Information Schemas
in the cluster of catalogs at that SQL-server.

The structure of the Definition Schema is a representation of the data model of SQL.

4.2.7 SQL-data

SQL-data is data described by SQL-schemas — data that is under the control of an SQL-
implementation in an SQL-environment.

Concepts 9

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.3 Tables

4.3 Tables

A table has an ordered collection of one or more columns and an unordered collection of zero or more
rows. Each column has a name and a data type. Each row has, for each column, exactly one value
in the data type of that column.

SQL-data consists entirely of table variables, called base tables. An operation that references zero
or more base tables and returns a table is called a query. The result of a query is called a derived
table.

A view is a named query, which can be invoked by use of this name. The result of such an invocation
is called a viewed table.

Some queries, and hence some views, are updatable, meaning they can appear as targets of state-
ments that change SQL-data. The results of changes expressed in this way are defined in terms of
corresponding changes to base tables.

No two columns of a base or viewed table can have the same name, though this constraint does not
apply to tables in general.

A base table is either a schema object (its descriptor is in a schema, see Subclause 4.6.7, “Base
tables and their components”) or a module object (its descriptor is in a module, see Subclause 4.9,
“Modules™). A base table whose descriptor is in a schema is called a created base table, and may
be either persistent or temporary (though its descriptor is persistent in either case). A persistent
base table contains rows of persistent SQL-data. A base table declared in a module may only be
temporary, and is called a declared temporary table.

A temporary table is an SQL-session object that cannot be accessed from any other SQL-session. A
global temporary table can be accessed from any associated SQL-client module. A local temporary
table can be accessed only from the module to which it is local.

A temporary table is empty when an SQL-session is initiated and it is emptied (that is, all its rows
are deleted) either when an SQL-transaction is terminated or when an SQL-session is terminated,
depending on its descriptor.

4.4 SQL datatypes

44.1 General

Every data value belongs to some data type.

Every data type is either predefined or user-defined. Every data type has a name. The name of a
predefined data type is a reserved word specified by that part of ISO/IEC 9075 which specifies the
data type. A user-defined data type is a schema object, see Subclause 4.6.4, “Abstract data types

and their components”, Subclause 4.6.5, “Distinct types”, and Subclause 4.6.6, “Named row types”.

A predefined data type is a data type specified by ISO/IEC 9075, and is therefore provided by the
SQL-implementation. A data type is predefined even though the user is required (or allowed) to
provide certain parameters when specifying it, for example the precision of a number.

A predefined data type is either atomic or composite. A predefined atomic type is a data type whose
values are not composed of values of other data types. The existence of an operation (SUBSTRING,
EXTRACT) that is capable of selecting part of a string or datetime value does not imply that a
string or datetime is not atomic. A predefined composite type is a data type each of whose values is
composed of zero or more values, each of a declared data type.

10 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.4 SQL data types

4.4.2 The null value

Every data type includes a special value, called the null value, sometimes denoted by the keyword
NULL. This value differs from other values in the following respects:

— Since the null value is in every data type, the data type of the null value implied by the
keyword NULL cannot be inferred; hence NULL can be used to denote the null value only in
certain contexts, rather than everywhere that a literal is permitted.

— In some contexts the null value is treated as neither equal nor unequal to any value, including
itself. In others it is treated as equal to itself and unequal to all other values.

4.4.3 Predefined atomic types

4.4.3.1 Numeric types

There are two classes of numeric type: exact numeric, which includes integer types and types with
specified precision and scale; and approximate numeric, which is essentially floating point, and for
which a scale may optionally be specified.

Every number has a precision (number of digits), and exact numeric types also have a scale (digits
after the radix point). Except when overflow occurs, arithmetic operations on operands of different
precisions and scales do not normally cause problems. If a value cannot be represented exactly, then
whether it is rounded or truncated is implementation-defined.

4.4.3.2 String types

A value of character type is a string (sequence) of characters from some character repertoire. A
character string type is either of fixed length, or of variable length up to some implementation-
defined maximum.

A value of character large object (CLOB) type is a string of characters of variable length, up to an
implementation-defined maximum that is probably greater than that of other character strings.

Either a character string or character large object may be specified as being based on a national
character repertoire, by specifying NATIONAL in the data type.

A value of bit string type is a string of bits (binary digits). A bit string type is either of fixed length,
or of variable length up to some implementation-defined maximum.

A value of binary string type (known as a binary large object, or BLOB) is a variable length sequence
of octets, up to an implementation-defined maximum.

4.4.3.3 Boolean type

A value of the Boolean data type is either true or false. The truth value of unknown is sometimes
represented by the null value.

Concepts 11

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.4 SQL data types

4.4.3.4 Datetime types

There are three datetime types, each of which specifies values comprising datetime fields.

A value of data type TIMESTAMP comprises values of the datetime fields YEAR (between zero and
9999), MONTH, DAY, HOUR, MINUTE and SECOND.

A value of data type TIME comprises values of the datetime fields HOUR, MINUTE and SECOND.

A value of data type DATE comprises values of the datetime fields YEAR (between zero and 9999),
MONTH and DAY.

A value of DATE is a valid Gregorian date. A value of TIME is a valid time of day.

TIMESTAMP and TIME may be specified with a number of (decimal) digits of fractional seconds
precision.

TIMESTAMP and TIME may also be specified as being WITH TIME ZONE, in which case every
value has associated with it a time zone displacement. In comparing values of a data type WITH
TIME ZONE, the value of the time zone displacement is disregarded.

4.4.3.5 Interval types

A value of an interval type represents the duration of a period of time. There are two classes of
intervals. One class, called year-month intervals, has a datetime precision that includes a YEAR
field or a MONTH field, or both. The other class, called day-time intervals, has an express or
implied interval precision that can include any set of contiguous fields other than YEAR or MONTH.

4.4.3.6 Reference types

A reference type is a predefined data type, a value of which references (or points to) some site
holding a value of the referenced type. The only sites that may be so referenced are the rows of
base tables that have the with REF value property. Since this property is permitted only on base
tables of named row type (see Subclause 4.6, “SQL-schema objects”, below), it follows that every
referenced type is a named row type.

4.4.4 Predefined composite types

4.4.4.1 Collection types

A collection comprises zero or more elements of a specified data type known as the element type.

An array is an ordered collection of not necessarily distinct values, whose elements may be refer-
enced by their ordinal position in the array.

An array type is specified by an array type constructor.

4.4.4.2 Row types

A row type is a sequence of (field name, data type) pairs, known as fields.

12 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.4 SQL data types

4.4.4.3 Fields

A field is a (field name, data type) pair.

4.45 Locator types

An embedded variable, parameter, or function result may be specified to be of a locator type. The
purpose of a locator is to allow very large data instances to be operated on without transferring the
whole of them to and from the SQL-agent.

A locator is an SQL-session object, rather than SQL-data, that can be used to reference an SQL-
data instance. A locator is either a large object (LOB) locator, an ADT locator, or an array locator.
A LOB locator one of the following:

— Binary large object (BLOB) locator, a value of which identifies a binary string.
— Character large object (CLOB) locator, a value of which identifies a character large object.

— A national character large object (NCLOB) locator, a value of which identifies a national charac-
ter large object.

An ADT locator identifies an instance of the ADT specified by the locator specification. An array
locator identifies an instance of the array type specified by the locator specification.

When the value at a site of data type large object string type, ADT or array is to be assigned to
an embedded variable of the corresponding locator type, a locator is generated and assigned to the
target.

A locator persists only until the current transaction is terminated, unless is has been held and has
not subsequently been freed. A held locator persists until either the transaction is terminated with
rollback, or until the termination of the SQL-session that created it.

4.5 Sites and operations on them

45.1 Sites

A site is a place that can hold an instance of a value of a specified data type. Every site has a
defined degree of persistence, independent of its data type. A site that exists until deliberately de-
stroyed is said to be persistent. A site that necessarily ceases to exist on completion of a compound
SQL-statement, at the end of an SQL-transaction or at the end of an SQL-session is said to be
temporary. A site that exists only for as long as necessary to hold an argument or returned value is
said to be transient.

As indicated above, the principal kind of persistent or temporary site is the base table. A base
table is a special kind of site, in that constraints can be specified on its values, which the SQL-
implementation is required to enforce (see Subclause 4.6.7.3, “Table constraints”).

Concepts 13

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.5 Sites and operations on them

4.5.2 Assignment and mutation

The instance at a site can be changed in two ways: by assignment or by mutation.

The operation of assignment replaces the instance at a site (known as the target) with a new
instance of a (possibly, though not necessarily, different) value (known as the source value).

The term mutation is used to refer to an operation that changes the value of some attribute of an
instance at a site whose data type is an abstract data type.

Neither assignment nor mutation has any effect on the reference value of a site, if any.

4.5.3 Nullability

Every site has a nullability characteristic, which indicates whether it may contain the null value
(is possibly nullable) or not (is known not nullable). Only the columns of base tables may be
constrained to be known not nullable, but columns derived from such columns may inherit the
characteristic.

A base table cannot be null, though it may have zero rows.

4.6 SQL-schema objects

46.1 General

An SQL-schema object has a descriptor. The descriptor of a persistent base table describes a
persistent object that has a separate, though dependent, existence as SQL-data. Other descriptors
describe SQL objects that have no existence distinct from their descriptors (at least as far as
ISO/IEC 9075 is concerned). Hence there is no loss of precision if, for example, the term “assertion
is used when “assertion descriptor” would be more strictly correct.

Every schema object has a name that is unique within the schema among objects of the name class
to which it belongs. The name classes are:

— Base tables and views.

— Domains and user-defined types (ADTSs, distinct types, and named row types).
— Table constraints, domain constraints and assertions.

— SQL-server modules.

— Triggers.

— SQL-invoked routines (specific names only, which are not required to be specified explicitly, but
if not are implementation-dependent).

— Character sets.
— Collations.
— Translations.

Certain schema objects have named components whose names are required to be unique within the
object to which they belong. Thus columns are uniquely named components of base tables or views,
attributes of ADTSs, fields of row types.

14 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.6 SQL-schema objects

Some schema objects may be provided by the SQL-implementation and can be neither created nor
dropped by a user.

4.6.2 Descriptors relating to character sets

4.6.2.1 Character sets

A character set is a named set of characters (character repertoire) together with a schema for
collecting characters into strings (form-of-use), that may be used for forming values of the char-
acter data type. Every character set has a default collation. Character sets provided by the
SQL-implementation, whether defined by other standards or by the implementation, are in the
Information Schema.

4.6.2.2 Collations

A collation, also known as a collating sequence, is a named operation for ordering character strings
in a particular character repertoire. Each collation is defined for exactly one character set.

A site declared with a character data type may be specified as having a collation, which is treated
as part of its data type.

4.6.2.3 Translations

A translation is a named operation for mapping from a character-string of some character set into
a character string of a given, not necessarily distinct, character set. The operation is performed by
invocation of an external function identified by the name of the translation. Since an entire string
is passed to this function and a string returned, the mapping is not necessarily from one character
to one character, but may be many-to-many.

4.6.3 Domains and their components

4.6.3.1 Domains

A domain is a named user-defined object that can be specified as an alternative to a data type,
wherever a data type can be specified. A domain consists of a data type, possibly a default option,
and zero or more (domain) constraints.

4.6.3.2 Domain constraints

A domain constraint applies to every column that is based on that domain, by operating as a table
constraint for each such column.

A domain constraint does not apply to any site other than columns based on the domain.

A domain constraint is applied to any value resulting from a cast operation to the domain.

Concepts 15

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.6 SQL-schema objects

4.6.4 Abstract data types and their components

4.6.4.1 Abstract data types

An abstract data type (known as an ADT) is a named, user-defined data type. A value of an ADT
comprises a number of attribute values. Each attribute of an ADT has a data type, specified by

an attribute type that is included in the descriptor of the ADT. Attribute values are said to be
encapsulated, that is to say, they are not directly accessible to the user, if at all. An attribute value
is accessible only by invoking function known as an observer function that returns that value; an
attribute value can be changed only by invoking a function known as a mutator function. An ADT
instance can also be accessed by a locator.

An ADT may be defined to be a subtype of one or more other ADTs, known as supertypes. A subtype
inherits every attribute of each of its supertypes, and may have additional attributes of its own. A
value of a subtype may appear anywhere a value of any of its supertypes is allowed (this concept is
known as substitutability).

4.6.4.2 Attributes

An attribute is a named component of an ADT descriptor. It has a data type, a default value, and a
nullability characteristic.

4.6.5 Distinct types

A distinct type is a user-defined data type that is based on some data type other than a distinct
type.

An argument of a distinct type can be passed only to a parameter of the same distinct type. This
allows precise control of what routines can be invoked on arguments of that data type.

4.6.6 Named row types

A named row type is a user-defined data type, identical to a row type that can be specified by use
of the row type constructor specified in ISO/IEC 9075-2. One or more base tables can be created,
based on a named row type. A named row type may be a subtype of one or more other named row

types.

4.6.7 Base tables and their components

46.7.1 Base tables

A base table is a site that holds a table value (see Subclause 4.3, “Tables”). All SQL-data is held in
base tables.

If a base table is based on a named row type, it may be a subtable of one or more other base tables
that are its supertables.

16 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.6 SQL-schema objects

46.7.2 Columns

A column is a named component of a table. It has a data type, a default, and a nullability charac-
teristic.

4.6.7.3 Table constraints

A table constraint is an integrity constraint associated with a single base table.

A table constraint is either a unique constraint, a primary key constraint, a referential constraint, or
a check constraint.

A unique constraint specifies one or more columns of the table as unique columns. A unique
constraint is satisfied if and only if no two rows in a table have the same non-null values in the
unique columns. In addition, if the unique constraint was defined with PRIMARY KEY, then it
requires that none of the values in the specified column or columns be the null value.

A referential constraint specifies one or more columns as referencing columns and corresponding
referenced columns in some (not necessarily distinct) base table, referred to as the referenced table.
Such referenced columns are the unique columns of some unique constraint of the referenced table.
A referential constraint is always satisfied if, for every row in the referencing table, the values of
the referencing columns are equal to those of the corresponding referenced columns of some row in
the referenced table. If null values are present, however, satisfaction of the referential constraint
depends on the treatment specified for nulls (known as the match type).

Referential actions may be specified to determine what changes are to be made to the referencing
table if a change to the referenced table would otherwise cause the referential constraint to be
violated.

A table check constraint specifies a search condition. The constraint is violated if the result of the
search condition is false for any row of the table (but not if it is unknown).

4.6.7.4 Triggers

A trigger, though not defined to be a component of a base table, is an object associated with a
single base table. A trigger specifies a trigger event, a trigger action time, and one or more triggered
actions.

A trigger action specifies what action on the base table shall cause the triggered actions. A trigger
events is either INSERT, DELETE, or UPDATE.

A trigger action time specifies whether the triggered action is to be taken BEFORE or AFTER the
trigger event.

A triggered action is either an SQL procedure statement or an atomic compound statement.

4.6.8 View definitions
A view (strictly, a view definition) is a named query, that may for many purposes be used in the

same way as a base table. Its value is the result of evaluating the query. See also Subclause 4.3,
“Tables”, above.

Concepts 17

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.6 SQL-schema objects

4.6.9 Assertions

An assertion is a check constraint. The constraint is violated if the result of the search condition is
false (but not if it is unknown).

4.6.10 SQL-server modules (defined in ISO/IEC 9075-4, SQL/PSM)

An SQL-server module is a module that is a schema object. See Subclause 4.9, “Modules”, below.

4.6.11 Schema routines

A schema routine is an SQL-invoked routine that is a schema object. See Subclause 4.10, “Routines”,
below.

4.6.12 Privileges

A privilege represents a grant, by some grantor, to a specified grantee (which is either an authoriza-
tion identifier, a role, or PUBLIC), of the authority required to use, or to perform a specified action
on, a specified schema object. The specifiable actions are: SELECT, INSERT, UPDATE, DELETE,
REFERENCES, USAGE, UNDER, TRIGGER, and EXECUTE.

A privilege with grant option authorizes the grantee to grant that privilege to other grantees, with
or without the grant option.

Every possible grantee is authorized by privileges granted to PUBLIC. SELECT with grant option
is granted to PUBLIC for every schema object in the Information Schema.

A user who creates a schema object is automatically granted all possible privileges on it, with grant
option.

Only a user who has some privilege on a schema object is able to discover its existence.

4.6.13 Roles

A role is a collection of zero or more role authorizations.

A role authorization authorizes a grantee (see above) to use every privilege granted to the role. It
also indicates whether the role authorization is WITH ADMIN OPTION, in which case the grantee
is authorized to grant the role.

4.7 Integrity constraints and constraint checking

4.7.1 Constraint checking

There are two kinds of schema object that describe constraints: assertions and table constraints
(including domain constraints of any domains on which columns of that table may be based), and
they are checked in the same way.

Every constraint is either deferrable or not deferrable.

In every SQL-session, every constraint has a constraint mode that is a property of that SQL-session.
Each constraint has a (persistent) default constraint mode, with which the constraint starts each
SQL-transaction in each SQL-session.

18 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.7 Integrity constraints and constraint checking

A constraint mode is either deferred or immediate, and can be set by an SQL-statement, provided
the constraint is deferrable.

When a transaction is initiated, the constraint mode of each constraint is set to its default.

On completion of execution of every SQL-statement, every constraint is checked whose constraint
mode is immediate.

Before termination of a transaction, every constraint mode is set to immediate (and therefore
checked).

4.7.2 Determinism and constraints

For various reasons, the result of evaluating an expression may be non-deterministic. For example,
in the case of a column whose data type is varying character string, the value remaining after the
elimination of duplicates may be different on different occasions, even though the data is the same.
This can occur because the number of trailing spaces may vary from one duplicate to another, and
the value to be retained, after the duplicates have been eliminated, is not specified by ISO/IEC
9075. Hence, the length of that value is non-deterministic. In such a case, the expression, and
any expression whose value is derived from it, is said to be possibly non-deterministic (“possibly”,
because it may be that all SQL-agents that ever update that column may remove trailing spaces;
but this cannot be known to the SQL-implementation).

Because a constraint that contains a possibly non-deterministic expression might be satisfied at one
time, yet fail at some later time, no constraint is permitted to contain such an expression.

A routine may claim to be deterministic; if it isn't, then the effect is implementation-dependent.

4.8 Communicating between the SQL-agent and the
SQL-implementation

4.8.1 Host languages

An SQL-implementation can communicate successfully with an SQL-agent only if the latter con-
forms to the standard for some programming language specified by ISO/IEC 9075. Such a language
is known generically as a host language, and a conforming SQL-implementation is required to
support at least one host language, for obvious reasons.

There are several methods of communicating, known as binding styles.

— The SQL-client module binding style. In this binding style, the user, using an implementation-
defined mechanism, specifies a module to be used as an SQL-client module.

— The CLI interface (specified in ISO/IEC 9075-3). In this case, the SQL-agent invokes one of a
number of standard routines, passing appropriate arguments, such as a character string whose
value is some SQL-statement.

— Embedded SQL (specified in ISO/IEC 9075-5). In this case, SQL-statements are coded into the
application program; an implementation-dependent mechanism is then used to:

e Generate from each SQL-statement an externally-invoked procedure. These procedures are
collected together into a module, for subsequent use as an SQL-client module.

< Replace each SQL-statement with an invocation of the externally-invoked procedure gener-
ated from it.

Concepts 19

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.8 Communicating between the SQL-agent and the SQL-implementation

— Direct invocation of SQL (specified in ISO/IEC 9075-5). Direct invocation is a method of exe-
cuting SQL-statements directly, through a front-end that communicates directly with the user.

ISO/IEC 9075-5 specifies the actions of an externally-invoked procedure in an SQL-client module
when it is called by a host language program that conforms to the standard for the host language.

4.8.2 Parameter passing and data type correspondences

48.2.1 General

Each parameter in the parameter list of an externally-invoked procedure has a name and a data
type.

4.8.2.2 Data type correspondences

ISO/IEC 9075 specifies correspondences between SQL data types and host language data types. Not
every SQL data type has a corresponding data type in every host language.

4.8.2.3 Status parameters

Every externally-invoked procedure is required to have an output parameter called SQLSTATE,
which is known as a status parameter.

SQLSTATE is a character string of length 5, whose values are defined by the parts of ISO/IEC
9075. An SQLSTATE value of “00000” (five zeros) indicates that the most recent invocation of an
externally-invoked procedure was successful.

4.8.2.4 Indicator parameters

An indicator parameter is an integer parameter that, by being specified immediately following
a parameter (other than an indicator parameter), is associated with it. A negative value in an
indicator parameter indicates that the associated parameter is null. A value greater than zero
indicates what the length of the value of the associated parameter would have been, had it not been
necessary to truncate it. This may arise with a character or bit string, and certain other data types.

If a null value is to be assigned to a parameter that has no associated indicator parameter, then an
exception condition is raised.

4.8.3 Descriptor areas (defined in ISO/IEC 9075-5)

A descriptor area (not to be confused with a descriptor) is a named area allocated by the SQL-
implementation at the request of the SQL-agent. A descriptor area is used as for communication
between the SQL-implementation and the SQL-agent. There are SQL-statements for transferring
information between the SQL-agent and a descriptor area.

20 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.8 Communicating between the SQL-agent and the SQL-implementation

4.8.4 Diagnostic information

A diagnostics area is a communication area allocated by the SQL-implementation, that is capable
of containing a number of conditions. The SQL-agent may specify the size of the area, in terms of
conditions, but otherwise the number is one.

Whenever the SQL-implementation returns a status parameter that does not indicate success-
ful completion, it sets values, representing one or more conditions, in the diagnostics area that
give some indication of what has happened. These values can be accessed by SQL-diagnostics
statements, execution of which do not change the diagnostics area.

A conforming SQL-implementation is not required to set more than one condition at the same time.

4.8.5 SQL-Transactions

An SQL-transaction (transaction) is a sequence of executions of SQL-statements that is atomic with
respect to recovery. That is to say: either it is completely successful, or it has no effect on any
SQL-schemas or SQL-data.

At any time, there is at most one current SQL-transaction between the SQL-agent and the SQL-
implementation.

If there is no current SQL-transaction, execution of a transaction-initiating statement will initiate
one.

Every SQL-transaction is terminated by either a commit statement or a rollback statement. The
execution of either of these statements may be implicit.

An SQL-transaction has a transaction state, certain properties of which can be set by the execution
of SQL-statements. Such SQL-statements may be executed only when there is no SQL-transaction
current. On the first occasion, at or after a transaction is initiated, that the SQL-client connects to,
or sets the connection to an SQL-server, the properties are sent to that SQL-server.

The access mode of an SQL-transaction indicates whether the transaction is read-only (it will not
change any persistent SQL-data) or read-write.

The isolation level of an SQL-transaction specifies the extent to which the effects of actions by
SQL-agents other than in the SQL-environment, are perceived within that SQL-transaction.

Every isolation level guarantees that every SQL-transaction will be executed completely or not at
all, and that no update will be lost. The isolation level SERIALIZABLE, guarantees serializable
execution, meaning that the effect of SQL-transactions that overlap in time is the same as the effect
they would have had, had they not overlapped in time. The other levels of isolation, REPEATABLE
READ, READ UNCOMMITTED and READ COMMITTED, guarantee progressively lower degrees
of isolation.

4.9 Modules

There are three kinds of module, each of which has certain properties, and contains various kinds
of module object (also known as module contents). The principal module objects are one or more
routines (see 4.10).

A module is one of the following:
— An SQL-client module, containing only externally invoked procedures.

— An SQL-server module containing only SQL-invoked routines.

Concepts 21

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.9 Modules

— an SQL-session module, containing only SQL-statements prepared in that session.

4.10 Routines

4.10.1 General

The following table shows the terms used for the various possible combinations of SQL/External,
SQL-invoked/Externally invoked, procedures/functions.

Table 1—Relationships of routine characteristics

SQL routines External routines

SQL-invoked routines SQL functions and SQL External functions and procedures
procedures

Externally invoked Only SQL procedures not relevant to SQL

routines (i.e. not functions)

An external routine is an SQL-invoked routine that references some compilation unit of a specified
standard programming language that is outside the SQL-environment. The method and time of
binding of such a reference is implementation-defined.

An externally-invoked routine is an SQL procedure that is invoked from some compilation unit of a
specified standard programming language.

An SQL-invoked routine is a routine that can be invoked from SQL. It is either a function or a
procedure.

An SQL-invoked routine is either a schema object or a component of an SQL-server module (itself a
schema object).

An SQL-invoked procedure is a procedure invoked by an SQL call statement. An SQL-invoked
function is invoked by a routine invocation in some value expression.

The name of an SQL-invoked routine is not required to be unique. If two or more routines share the
same name, that name is said to be overloaded, and an invocation of that name will cause execution
of the routine whose signature best matches the arguments of the invocation.

4.10.2 Identity functions

If an SQL-invoked functions has a parameter specified RESULT, that parameter is known as a
result parameter, and if the data type of the result parameter and that of the result are the same
ADT, then the function is said to be an identity function. The result of such a function is the value
of the result parameter, possibly mutated.

Every mutator function is an identity function.
4.10.3 Built-in functions

A built-in function, or predefined function, is an SQL-invoked function specified by ISO/IEC 9075.
An SQL-implementation may provide additional, implementation-defined, built-in functions.

22 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.11 SQL-statements

411 SQL-statements

4.11.1 Classes of SQL-statements

An SQL-statement is a string of characters that conforms to the Format and Syntax Rules specified
in one of the parts of ISO/IEC 9075.

Most SQL-statements can be prepared for execution and executed in an SQL-client module, in
which case each is prepared as a (single SQL-statement) externally-invoked procedure when the
SQL-client module is created, and executed when that procedure is called.

There are at least five ways of classifying SQL-statements:

— According to their effect on SQL objects, whether persistent objects, i.e., SQL-data, SQL-schemas
and their contents, or SQL-client modules, or temporary objects, such as SQL-sessions and other
SQL-statements.

— According to whether or not they initiate an SQL-transaction, or can, or must, be executed when
no SQL-transaction is active.

— According to whether or not they may be embedded in a program written in a standard pro-
gramming language.

— According to whether or not they may be directly executed.
— According to whether or not they may be dynamically prepared and executed.

ISO/IEC 9075 permits implementations to provide additional, implementation-defined, statements
that may fall into any of these categories. This Subclause will not mention those statements again,
as their classification is entirely implementation-defined.

4.11.2 SQL-statements classified by function
The following are the broad classes of SQL-statements:

— SQL-schema statements, which can be used to create, alter, and drop schemas and schema
objects.

— SQL-data statements, which perform queries, and insert, update and delete operations on
tables. Execution of an SQL-data statement is capable of affecting more than one row, of more
than one table.

— SQL-transaction statements, which set parameters for, and start or terminate transactions.

— SQL-control statements, which may be used to control the execution of a sequence of SQL
statements.

— SQL-connection statements, which initiate and terminate connections, and allow an SQL-client
to switch from an session with one SQL-server to a session with another.

— SQL-session statements, which set some default values and other parameters of an SQL-session.

Concepts 23

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
4.11 SQL-statements

— SQL-diagnostics statements, which get diagnostics (from the diagnostics area) and signal excep-
tions in SQL routines.

24 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

5 The parts of ISO/IEC 9075

5.1 Overview

ISO/IEC 9075-1, Framework, is a prerequisite for all other parts, because it describes the basic
concepts on which other parts are based and the notation used in them.

ISO/IEC 9075-2, Foundation, specifies the structure of SQL-statements and the effects of executing
them.

Every part of ISO/IEC 9075 other than parts 1 and 2 is specified as an amendment to ISO/IEC
9075-2. However, the functionality of these other parts is somewhat different in nature.

ISO/IEC 9075-3, Call-level interface, and ISO/IEC 9075-5, Host language bindings, specify mecha-
nisms of communication between an SQL-agent and an SQL-implementation.

ISO/IEC 9075-4, Persistent Stored Modules, and ISO/IEC 9075-7, Temporal, specify significant
additions to SQL itself, in the first case by making SQL computationally complete, in the other two
by specifying additional data types and operations on them.

ISO/IEC 9075-6, XA Specialization, specifies entry points by which an SQL-implementation may be
invoked by a transaction manager.

The content of each part is described in the following subclauses.

5.2 ISO/IEC 9075-1: Framework (SQL/Framework)

ISO/IEC 9075-1 contains:

a) A description of an SQL-environment, and brief descriptions of the concepts used in ISO/IEC
9075.

b) A brief description of the content of each part. These descriptions are purely informative, and
do not constitute requirements.

c) Notations and conventions that apply to all or most parts of ISO/IEC 9075. Other parts specify
further conventions as required.

5.3 ISO/IEC 9075-2: Foundation (SQL/Foundation)

ISO/IEC 9075-2 specifies the following features of SQL.

5.3.1 Data types specified in ISO/IEC 9075-2
The following data types are specified in ISO/IEC 9075-2:
— All numeric and string types.

— The Boolean type.

The parts of ISO/IEC 9075 25

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
5.3 ISO/IEC 9075-2: Foundation (SQL/Foundation)

— All datetime and interval types.

— All locator types.

— Row types.

— Array types.

— Domains, abstract data types, and distinct types.

— Reference types.

5.3.2 Tables

Rules for determining functional dependencies and candidate keys of tables are defined.

5.3.3 SQL-statements specified in ISO/IEC 9075-2
The following are the classes of SQL-statements specified in ISO/IEC 9075-2:

— SQL-schema statements, which can be used to create, alter, and drop schemas and the schema
objects specified in ISO/IEC 9075-2.

— SQL-data statements, which can be used to perform queries, and insert, update and delete
operations on tables.

— SQL-transaction statements, which can be used to set properties of, and initiate or terminate
transactions.

— One SQL-control statement (RETURN), which can be used to specify a value to be returned by
a function.

— SQL-connection statements, which can be used to initiate and terminate connections, and allow
an SQL-client to switch from an session with one SQL-server to a session with another.

— SQL-session statements, which can be used to set some default values and other properties of
an SQL-session.

— SQL-diagnostics statements, which get diagnostic information (from the diagnostics area).

For each SQL-statement that it defines, ISO/IEC 9075-2 specifies which SQL-statements will, if
executed when no transaction is active, initiate a transaction and which will not.

5.4 1SO/IEC 9075-3: Call Level Interface (SQL/CLI)

ISO/IEC 9075-3 specifies a method of binding between an application program, in one of a num-
ber of standard programming languages, and an SQL-implementation. The effect is functionally
equivalent to dynamic SQL, specified in ISO/IEC 9075-5 (SQL/Bindings).

Procedures (routines) are specified that can be used to:
— Allocate and free resources (descriptor, or communication areas).

— Initiate, control, and terminate SQL-connections between SQL-client and SQL-servers.

26 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
5.4 ISO/IEC 9075-3: Call Level Interface (SQL/CLI)

— Cause the execution of SQL-statements, including the preparation of statements for subsequent
execution.

— Obtain diagnostic information.

— Obtain information about the SQL-implementation, for example, the SQL-servers to which the
SQL-client may be able to connect.

An important difference between CLI and Bindings is that, in the context of the latter, there is
only one SQL-environment, whereas, in the context of CLI, a number of SQL-environments can be
initiated and managed independently. Consequently, although an SQL-environment is defined to be
simply a set of circumstances with various features, the term is used in CLI to refer to the current
state (descriptor) of one, possibly among many, SQL-environments. Thus, the term is used to mean
the session between an application (SQL-agent) and an SQL-client (not to be confused with the
SQL-session — referred to in CLI as the SQL-connection — between SQL-client and SQL-server).

5.5 ISO/IEC 9075-4: Persistent Stored Modules (SQL/PSM)

ISO/IEC 9075-4 makes SQL computationally complete by specifying the syntax and semantics of
additional SQL-statements.

Those include facilities for:
— The specification of statements to direct the flow of control.
— The assignment of the result of expressions to variables and parameters.

— The specification of condition handlers that allow compound statements to deal with various
conditions that may arise during their execution.

— The specification of statements to signal and resignal conditions.
— The declaration of local cursors.
— The declaration of local variables.

It also defines Information Schema tables that contain schema information describing SQL-server
modules.

5.5.1 SQL-statements specified in ISO/IEC 9075-4
The following are the broad classes of SQL-statements specified in ISO/IEC 9075-4:

— Additional SQL-control statements, which may be used to control the execution of an SQL
routine, including the declaration of handlers to handle exceptions.

— An SQL-control statement (set path), which may be used to control the selection of candidate
routines during routine name resolution.

— SQL-diagnostics statements, which may be used to signal exceptions.

The parts of ISO/IEC 9075 27

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
5.6 ISO/IEC 9075-5: Host Language Bindings (SQL/Bindings)

5.6 ISO/IEC 9075-5: Host Language Bindings (SQL/Bindings)

ISO/IEC 9075-5 specifies three methods of binding an SQL-agent to an SQL-implementation, and
certain facilities for the management of SQL-sessions.

5.6.1 SQL-session facilities

ISO/IEC 9075-5 specifies facilities for setting certain attributes of SQL-sessions that are not speci-
fied in ISO/IEC 9075-2. These include default names, of catalog schema or character set to be used
when none is specified.

5.6.2 Dynamic SQL

Dynamic SQL is a method of binding between an application program, in one of a number of
standard programming languages, and an SQL-implementation. Facilities are specified to:

— Allocate and free a descriptor area used for communication between the SQL-implementation
and the SQL-agent.

— Cause the execution of SQL-statements, including the preparation of statements for subsequent
execution.

— Obtain diagnostic information additional to that specified in ISO/IEC 9075-2.

5.6.3 Embedded SQL

Embedded SQL is a method of embedding SQL-statements in a compilation unit that otherwise
conforms to the standard for a particular programming language, known as the host language. It
defines how an equivalent compilation unit, entirely in the host language, may be derived that
conforms to the particular programming language standard. In that equivalent compilation unit,
each embedded SQL-statement has been replaced by one or more statements that invoke a database
language procedure that contains the SQL-statement.

5.6.4 Direct invocation of SQL

Direct invocation of SQL is a method of executing SQL-statements directly. In direct invocation of
SQL, the following are implementation-defined:

— The method of invoking SQL-statements.
— The method of raising conditions that result from the execution of such statements.

— The method of accessing the diagnostics information that results from the execution of such
statements.

— The method of returning the results.

28 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
5.6 ISO/IEC 9075-5: Host Language Bindings (SQL/Bindings)

5.6.5 SQL-statements specified in ISO/IEC 9075-5

5.6.5.1 Additional functional classes of SQL-statements
ISO/IEC 9075-5 adds the following classes of SQL-statements:

— SQL-dynamic statements, which support the preparation and execution of dynamically gener-
ated SQL-statements, and obtaining information about them

— SQL embedded exception declaration, which is converted to a statement in the host language.

A number of SQL data statements are also added, most of which contain the word "dynamic" in
their names. They are not to be confused with SQL-dynamic statements.

For each SQL-statement that it defines, ISO/IEC 9075-5 specifies which SQL-statements will, if
executed when no transaction is active, initiate a transaction and which will not.

For each SQL-statement, ISO/IEC 9075-5 specifies whether:
— It may be embedded in a host language.

— It may be dynamically prepared and executed. Any preparable SQL-statement can be executed
immediately, with the exception of those that fetch data into a descriptor area.

— It may be executed directly.

5.7 1SO/IEC 9075-6: XA Specialization (SQL/Transaction)

ISO/IEC 9075-6 is currently in preparation.
ISO/IEC 9075-6 provides SQL details for the XA interface.

5.8 ISO/IEC 9075-7: Temporal (SQL/Temporal)

ISO/IEC 9075-7 is currently in preparation.
ISO/IEC 9075-7 defines facilities to simplify the management of temporal data.

A period type is a data type each value of which represents a series of consecutive values of one of
certain ordered data types — in particular, dates, times and timestamps.

As well as various operators on periods, ISO/IEC 9075-7 specifies aggregate operators on sets of
periods and on tables with period-valued columns, for use in queries, constraints and database
maintenance.

NOTE 3 — ISO/IEC 9075-7 uses the term “period” rather than “interval” because the latter is used with a
different meaning in ISO/IEC 9075-2.

The parts of ISO/IEC 9075 29

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

30 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

6 Notation and conventions used in other parts of ISO/IEC 9075

The notation and conventions defined in this clause are used in the other parts of ISO/IEC 9075,
except where more appropriate ones are defined locally.

6.1 Notation

The syntactic notation used in ISO/IEC 9075 is an extended version of BNF (“Backus Normal Form”
or “Backus Naur Form”).

In a BNF language definition, each syntactic element, known as a BNF nonterminal symbol, of the
language is defined by means of a production rule. This defines the element in terms of a formula
consisting of the characters, character strings, and syntactic elements that can be used to form an
instance of it.

In the version of BNF used in ISO/IEC 9075, the following symbols have the meanings shown:

Symbol Meaning

<> A character string enclosed in angle brackets is the name of a syntactic element (BNF nonterminal)
of the SQL language.

= The definition operator is used in a production rule to separate the element defined by the rule from
its definition. The element being defined appears to the left of the operator and the formula that
defines the element appears to the right.

[1] Square brackets indicate optional elements in a formula. The portion of the formula within the
brackets may be explicitly specified or may be omitted.

{} Braces group elements in a formula. The portion of the formula within the braces must be explicitly
specified.

| The alternative operator. The vertical bar indicates that the portion of the formula following the bar

is an alternative to the portion preceding the bar. If the vertical bar appears at a position where

it is not enclosed in braces or square brackets, it specifies a complete alternative for the element
defined by the production rule. If the vertical bar appears in a portion of a formula enclosed in braces
or square brackets, it specifies alternatives for the contents of the innermost pair of such braces or
brackets.

The ellipsis indicates that the element to which it applies in a formula may be repeated any number
of times. If the ellipsis appears immediately after a closing brace “}", then it applies to the portion

of the formula enclosed between that closing brace and the corresponding opening brace “{". If an
ellipsis appears after any other element, then it applies only to that element.

I Introduces normal English text. This is used when the definition of a syntactic element is not
expressed in BNF.

Spaces are used to separate syntactic elements. Multiple spaces and line breaks are treated as a
single space. Apart from those symbols to which special functions were given above, other charac-
ters and character strings in a formula stand for themselves. In addition, if the symbols to the right
of the definition operator in a production consist entirely of BNF symbols, then those symbols stand
for themselves and do not take on their special meaning.

Pairs of braces and square brackets may be nested to any depth, and the alternative operator may
appear at any depth within such a nest.

Notation and conventions used in other parts of ISO/IEC 9075 31

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.1 Notation

A character string that forms an instance of any syntactic element may be generated from the BNF
definition of that syntactic element by application of the following steps:

1)

2)

3)

4)

5)

Select any one option from those defined in the right hand side of a production rule for the
element, and replace the element with this option.

Replace each ellipsis and the object to which it applies with one or more instances of that object.

For every portion of the string enclosed in square brackets, either delete the brackets and their
contents or change the brackets to braces.

For every portion of the string enclosed in braces, apply steps 1 through 5 to the substring
between the braces, then remove the braces.

Apply steps 1 through 5 to any BNF non-terminal symbol that remains in the string.

The expansion or production is complete when no further non-terminal symbols remain in the
character string.

6.2 Conventions

6.2.1 Specification of syntactic elements

Syntactic elements are specified in terms of:

Function: A short statement of the purpose of the element.
Format: A BNF definition of the syntax of the element.

Syntax Rules: A specification in English of the syntactic properties of the element, or of
additional syntactic constraints, not expressed in BNF, that the element shall satisfy, or both.

Access Rules: A specification in English of rules governing the accessibility of schema objects
that must hold before the General Rules may be successfully applied.

General Rules: A specification in English of the run-time effect of the element. Where more
than one General Rule is used to specify the effect of an element, the required effect is that
which would be obtained by beginning with the first General Rule and applying the Rules in
numeric sequence unless a Rule is applied that specifies or implies a change in sequence or
termination of the application of the Rules. Unless otherwise specified or implied by a specific
Rule that is applied, application of General Rules terminates when the last in the sequence has
been applied.

Conformance Rules: A specification of how the element must be supported for conformance to
Core SQL.

The scope of notational symbols is the Subclause in which those symbols are defined. Within a
Subclause, the symbols defined in Syntax Rules, Access Rules, or General Rules can be referenced
in other rules provided that they are defined before being referenced.

32

ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

6.2.2 Specification of the Information Schema

The objects of the Information Schema in ISO/IEC 9075 are specified in terms of:
— Function: A short statement of the purpose of the definition.

— Definition: A definition, in SQL, of the object being defined.

— Description: A specification of the run-time value of the object, to the extent that this is not
clear from the definition.

Each Information Schema object is also specified using Conformance Rules that indicate how the
view shall be supported for Core SQL.

The only purpose of the view definitions in the Information Schema is to specify the contents
of those viewed tables. The actual objects on which these views are based are implementation-
dependent.

6.2.3 Use of terms

6.2.3.1 Exceptions

Except where otherwise specified (for example, in the General Rules of Subclause 10.4, "<routine
invocation>", in ISO/IEC 9075-2), the phrase “an exception condition is raised:”, followed by the
name of a condition, is used in General Rules and elsewhere to indicate that:

— The execution of a statement is unsuccessful.

— Application of General Rules may be terminated.

— Diagnostic information is to be made available.

— Execution of the statement is to have no effect on SQL-data or schemas.

The effect on any assignment target and SQL descriptor area of an SQL-statement that termi-
nates with an exception condition, unless explicitly defined by ISO/IEC 9075, is implementation-
dependent.

The phrase “a completion condition is raised:”, followed by the name of a condition, is used in
General Rules and elsewhere to indicate that application of General Rules is not terminated and
diagnostic information is to be made available; unless an exception condition is also raised, the
execution of the SQL-statement is successful.

If more than one condition could have occurred as a result of a statement, it is implementation-
dependent whether diagnostic information pertaining to more than one condition is made available.
See Subclause 4.29.1, "Status parameters", for rules regarding precedence of status parameter
values.

6.2.3.2 Syntactic containment

Let <A>, , and <C> be syntactic elements; let Al, B1, and C1 respectively be instances of <A>,
, and <C>.

Notation and conventions used in other parts of ISO/IEC 9075 33

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

In a Format, <A> is said to immediately contain if appears on the right-hand side of the
BNF production rule for <A>. An <A> is said to contain or specify <C> if <A> immediately contains
<C> or if <A> immediately contains a that contains <C>.

In SQL language, Al is said to immediately contain Bl if <A> immediately contains and B1 is
part of the text of Al. Al is said to contain or specify C1 of <C> if A1 immediately contains C1 or if
Al immediately contains B1 and B1 contains C1. If Al contains C1, then C1 is contained in Al and
C1 is specified by Al.

Al is said to contain B1 with an intervening <C> if Al contains B1 and Al contains an instance of
<C> that contains B1. Al is said to contain B1 without an intervening <C> if Al contains B1 and
Al does not contain an instance of <C> that contains B1.

Al simply contains B1 if Al contains B1 without an intervening instance of <A> or an intervening
instance of .

If <A> contains , then is said to be contained in <A> and <A> is said to be a containing
production symbol for . If <A> simply contains , then is said to be simply contained in
<A> and <A> is said to be a simply containing production symbol for .

Al is the innermost <A> satisfying a condition C if Al satisfies C and Al does not contain an
instance of <A> that satisfies C. Al is the outermost <A> satisfying a condition C if Al satisfies C
and Al is not contained in an instance of <A> that satisfies C.

If <A> contains a <table name> that identifies a view that is defined by a <view definition> V,
then <A> is said to generally contain the <query expression> contained in V. If <A> contains a
<routine invocation> RI, then <A> is said to generally contain the routine bodies of all <SQL-
invoked routine>s in the set of subject routines of RI. If <A> contains , then <A> generally
contains . If <A> generally contains and generally contains <C>, then <A> generally
contains <C>.

NOTE 4 — The “set of subject routines of a <routine invocation>" is defined in Subclause 10.4, "<routine
invocation>", in ISO/IEC 9075-2.

6.2.3.3 Terms denoting rule requirements

In the Syntax Rules, the term shall defines conditions that are required to be true of syntactically
conforming SQL language. When such conditions depend on the contents of one or more schemas,
then they are required to be true just before the actions specified by the General Rules are per-
formed. The treatment of language that does not conform to the SQL Formats and Syntax Rules
is implementation-dependent. If any condition required by Syntax Rules is not satisfied when the
evaluation of Access or General Rules is attempted and the implementation is neither process-
ing non-conforming SQL language nor processing conforming SQL language in a non-conforming
manner, then an exception condition is raised: syntax error or access rule violation.

In the Access Rules, the term shall defines conditions that are required to be satisfied for the
successful application of the General Rules. If any such condition is not satisfied when the General
Rules are applied, then an exception condition is raised: syntax error or access rule violation.

In the Conformance Rules, the term shall defines conditions that are required to be true of SQL
language for it to syntactically conform to Core SQL.

34 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

6.2.3.4 Rule evaluation order

A conforming implementation is not required to perform the exact sequence of actions defined in
the General Rules, provided its effect on SQL-data and schemas is identical to the effect of that
sequence. The term effectively is used to emphasize actions whose effect might be achieved in other
ways by an implementation.

The Syntax Rules and Access Rules for contained syntactic elements are effectively applied at
the same time as the Syntax Rules and Access Rules for the containing syntactic elements. The
General Rules for contained syntactic elements are effectively applied before the General Rules for
the containing syntactic elements.

Where the precedence of operators is determined by the Formats of ISO/IEC 9075 or by parentheses,
those operators are effectively applied in the order specified by that precedence.

Where the precedence is not determined by the Formats or by parentheses, effective evaluation
of expressions is generally performed from left to right. However, it is implementation-dependent
whether expressions are actually evaluated left to right, particularly when operands or operators
might cause conditions to be raised or if the results of the expressions can be determined without
completely evaluating all parts of the expression.

In general, if some syntactic element contains more than one other syntactic element, then the
General Rules for contained elements that appear earlier in the production for the containing
syntactic element are applied before the General Rules for contained elements that appear later.

For example, in the production:

<A> = <C>

the Syntax Rules and Access Rules for <A>, , and <C> are effectively applied simultaneously.
The General Rules for are applied before the General Rules for <C>, and the General Rules for
<A> are applied after the General Rules for both and <C>.

If the result of an expression or search condition is not dependent on the result of some part of that
expression or search condition, then that part of the expression or search condition is said to be
inessential. An invocation of an SQL-invoked function is inessential if it is deterministic and does
not possibly modify SQL-data; otherwise, it is implementation-defined whether it is essential or
inessential.

If an Access Rule pertaining to an inessential part is not satisfied, then the syntax error or access
rule violation exception condition is raised regardless of whether or not the inessential parts are

actually evaluated. If evaluation of an inessential part would cause an exception condition to be

raised, then it is implementation-dependent whether or not that exception condition is raised.

6.2.3.5 Conditional rules

A conditional rule is specified with “If” or “Case” conventions. A rules specified with “Case” conven-
tions include a list of conditional sub-rules using “If” conventions. The first such “If” sub-rule whose
condition is true is the effective sub-rule of the “Case” rule. The last sub-rule of a “Case” rule may
specify “Otherwise”, in which case it is the effective sub-rule of the “Case” rule if no preceding “If”
sub-rule in the “Case” rule is satisfied.

Notation and conventions used in other parts of ISO/IEC 9075 35

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

6.2.3.6 Syntactic substitution

In the Syntax and General Rules, the phrase “X is implicit” indicates that the Syntax and General
Rules are to be interpreted as if the element X had actually been specified. Within the Syntax Rules
of a given Subclause, it is known whether the element was explicitly specified or is implicit.

In the Syntax and General Rules, the phrase “the following <X> is implicit: Y” indicates that the
Syntax and General Rules are to be interpreted as if a syntactic element <X> containing Y had
actually been specified.

In the Syntax Rules and General Rules, the phrase “former is equivalent to latter” indicates that the
Syntax Rules and General Rules are to be interpreted as if all instances of former in the element
had been instances of latter.

If a BNF nonterminal is referenced in a Subclause without specifying how it is contained in a BNF
production that the Subclause defines, then

Case:

— If the BNF nonterminal is itself defined in the Subclause, then the reference shall be assumed
to be to the occurrence of that BNF nonterminal on the left side of the defining production.

— Otherwise, the reference shall be assumed to be to a BNF production in which the particular
BNF nonterminal is immediately contained.

6.2.3.7 Other terms

Some Syntax Rules define terms, such as T1, to denote named or unnamed tables. Such terms are
used as table names or correlation names. Where such a term is used as a correlation name, it does
not imply that any new correlation name is actually defined for the denoted table, nor does it affect
the scopes of any actual correlation names.

An SQL-statement S1 is said to be executed as a direct result of executing an SQL-statement if S1
is the SQL-statement contained in an <externally-invoked procedure> or an <SQL-invoked routine>
that has been executed.

An <SQL procedure statement> Sl is said to be executed as an indirect result of executing an SQL-
statement if S1 is a <triggered SQL statement> that is contained in some <trigger definition> and a
triggering <SQL procedure statement> is executed.

A value P is part of a value W if and only if:

e W is a table and P is a row of W.

= WisarowandP is a field of W.

= W is a collection and P is an element of W.
= P is a part of some value that is a part of W.

If a value has parts, then it follows that an instance of that value has parts; hence the site it
occupies has parts, each of which is also a site.

An item X is a part of an item Y if and only if:
e Yisarowand X is a column of Y.

e Y is a <routine invocation> and X is an SQL parameter of VY.

36 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

= Y isaUDT instance and X is an attribute of Y.
e There exists an item X2 such that X is a part of X2 and X2 is a part of .

Another part of ISO/IEC 9075 may define additional terms that are used in that part only.

6.2.4 Descriptors

A descriptor is a conceptual structured collection of data that defines an instance of an object of
a specified type. The concept of descriptor is used in specifying the semantics of SQL. It is not
necessary that any descriptor exist in any particular form in any SQL-environment.

Some SQL objects cannot exist except in the context of other SQL objects. For example, columns
cannot exist except in tables. Each such object is independently described by its own descriptor,
and the descriptor of an enabling object (e.g., table) is said to include the descriptor of each enabled
object (e.g., column or table constraint). Conversely, the descriptor of an enabled object is said to be
included in the descriptor of an enabling object.

In other cases, certain SQL objects cannot exist unless some other SQL object exists, even though

there is no inclusion relationship. For example, SQL does not permit an assertion to exist if some
table referenced by the assertion does not exist. Therefore, an assertion descriptor is dependent on
or depends on one or more table descriptors (equivalently, an assertion is dependent on or depends
on one or more tables). In general, a descriptor D1 can be said to depend on, or be dependent on,

some descriptor D2.

There are two ways of indicating dependency of one SQL object on another. In many cases, the
descriptor of the dependent SQL object is said to “include the name of” the SQL object on which

it is dependent. In this case “the name of” is to be understood as meaning “sufficient information
to identify the descriptor of”. Alternatively, the descriptor of the dependent SQL object may be
said to include text (e.g., <query expression>, <search condition>) of the SQL object on which it

is dependent. However, in such cases, whether the implementation includes actual text (with
defaults and implications made explicit) or its own style of parse tree is irrelevant; the validity of
the descriptor is clearly “dependent on” the existence of descriptors of objects that are referenced in
it.

The statement that a column “is based on” a domain, is equivalent to a statement that a column “is
dependent on” that domain.

An attempt to destroy an SQL object, and hence its descriptor, may fail if other descriptors are
dependent on it, depending on how the destruction is specified. Such an attempt may also fail if the
descriptor to be destroyed is included in some other descriptor. Destruction of a descriptor results
in the destruction of all descriptors included in it, but has no effect on descriptors on which it is
dependent.

The implementation of some SQL objects described by descriptors requires the existence of objects
not specified by this International Standard. Where such objects are required, they are effec-
tively created whenever the associated descriptor is created and effectively destroyed whenever the
associated descriptor is destroyed.

Notation and conventions used in other parts of ISO/IEC 9075 37

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

6.2.5 Relationships of incremental parts to ISO/IEC 9075-2, Foundation

Parts of ISO/IEC 9075 other than ISO/IEC 9075-1 and ISO/IEC 9075-2 depends on ISO/IEC 9075-2
and its Technical Corrigenda and are referenced as incremental parts. Each incremental part is
to be used as though it were merged with the text of ISO/IEC 9075. This Subclause describes the
conventions used to specify the merger.

The merger described also accounts for the Technical Corrigenda that have been published to correct
ISO/IEC 9075. This accommodation is typically indicated by the presence of a phrase like “in the
Technical Corrigenda” or “in the TC".

6.2.5.1 New and modified Clauses, Subclauses, and Annexes

Where a Clause (other than Clause 1, “Scope”, and Clause 2, “Normative references”), Subclause,
or Annex in any incremental part of ISO/IEC 9075 has a name identical to a Clause, Subclause,

or Annex in ISO/IEC 9075-2, it supplements the Clause, Subclause, or Annex, respectively, in
ISO/IEC 9075, regardless of whether or not the number or letter of the Clause, Subclause, or Annex
corresponds. It typically does so by adding or replacing paragraphs, Format items, or Rules.

In each incremental part, Table 1, "Clause, Subclause, and Table relationships”, identifies the
relationships between each Clause, Subclause, and Annex in that incremental part and the corre-
sponding Clause, Subclause, or Annex in ISO/IEC 9075-2.

Where a Clause, Subclause, or Annex in an incremental part has a name that is not identical to
the name of some Clause, Subclause, or Annex in ISO/IEC 9075-2 it provides language specification
particular to that part. A Subclause that is part of a Clause or Subclause identified as new is
inherently new is not marked.

The Clauses, Subclauses, and Annexes in each incremental part appear in the order in which
they are intended to appear in the merged document. In the absence of other explicit instructions
regarding its placement, any new Clause, Subclause, or Annex is to be positioned as follows: Locate
the prior Clause, Subclause, or Annex in ISO/IEC 9075-2 whose name is identical to the name of a
corresponding Clause, Subclause, or Annex that appears in the incremental part of ISO/IEC 9075.
The new Clause, Subclause, or Annex shall immediately follow that Clause, Subclause, or Annex. If
there are multiple new Clauses, Subclauses, or Annexes with no intervening Clause, Subclause, or
Annex that modifies an existing Clause, Subclause, or Annex, then those new Clauses, Subclauses,
or Annexes appear in order, following the prior Clause, Subclause, or Annex whose name was
matched.

6.2.5.2 New and modified Format items

In a modified Subclause, a Format item that defines a BNF nonterminal symbol (that is, the BNF
nonterminal symbol appears on the left-hand side of the ::= mark) either modifies a Format item
whose definition appears in ISO/IEC 9075-2, or replaces a Format item whose definition appears
in ISO/IEC 9075-2, or defines a new Format item that does not have a definition at all in ISO/IEC
9075-2. Those Format items in the incremental part that modify a Format item whose definition
appears in ISO/IEC 9075-2 are identified by the existence of a “Format comment” such as:

<modified item> ::=
Il All alternatives from ISO/IEC 9075-2
| <new alternative>

38 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

By contrast, Format items that completely replace Format items in ISO/IEC 9075-2 have BNF
nonterminal symbols identical to BNF nonterminal symbols of Format items in ISO/IEC 9075-2, but
do not state that they include any alternatives from ISO/IEC 9075-2.

New Format items that have no correspondence to any Format item in ISO/IEC 9075-2 are not
distinguished in the incremental part.

Format items in new Subclauses are unmarked.

6.2.5.3 New and modified paragraphs and rules

In modified Subclauses, each paragraph or Rule is marked to indicate whether it is a modification
of a paragraph or Rule in ISO/IEC 9075-2, or is a new paragraph or Rule added by this incremental
part.

Modifications of paragraphs or Rules in ISO/IEC 9075-2 are identified by the inclusion of an indica-
tive phrase enclosed in a box.

| Replace the 5th paragraph | means that the following text is to replace the fifth paragraph of the
corresponding Subclause in ISO/IEC 9075-2.

| Replace SR6)b)i) | means that the following text is to replace Syntax Rule 6)b)ii) of the corresponding
Subclause in ISO/IEC 9075-2.

means that the following text is to extend or enhance Syntax Rule 3). In most
instances, the augmentation is the addition of a new alternative meant to support new syntax.

New paragraphs or Rules in an incremental part is marked to indicate where it is to be inserted.

[Insert before 2nd paragraph | means that the following text is to be read as though it were inserted
immediately before the second paragraph of the corresponding Subclause in ISO/IEC 9075-2.

| Insert before GR4) | means that the following text is to be read as though it were inserted immediately
before General Rule 4) of the corresponding Subclause in ISO/IEC 9075-2.

If no specific insertion point is indicated, as in| Insert this paragraph | or [Insert this GR |, then the follow-
ing text is to be read as though it were appended at the end of the appropriate section (the General
Rules, for example) of the corresponding Subclause in ISO/IEC 9075-2.

In such indications, “SR” is used to mean “Syntax Rule”, “AR” is used to mean “Access Rule”, and
“GR” is used to mean “General Rule”. “Desc.” is used to mean “Description” and “Func.” is used to
mean “Function”.

All paragraphs, Format items, and Rules in new Clauses or Subclauses are also new and are
therefore unmarked.

6.2.5.4 New and modified tables

If the name of a table in an incremental part is identical to that of a table in ISO/IEC 9075-2, then
the table supplements the table in ISO/IEC 9075-2, typically by adding or replacing one or more
table entries; otherwise, it is a new table.

In each incremental part, there is a table, Table 1, "Clause, Subclause, and Table relationships",
that identifies the relationships between tables in that incremental part and the corresponding
tables in ISO/IEC 9075-2.

Notation and conventions used in other parts of ISO/IEC 9075 39

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.2 Conventions

The rows in modified tables are generally new rows to be effectively inserted into the correspond-
ing table in ISO/IEC 9075-2, though in rare cases a row already in a table in ISO/IEC 9075-2 is
effectively replaced by a row in the table in the incremental part. Such replacement is required
wherever the value in the first column of the corresponding table is the same.

6.2.6 Index typography
In the Indexes to the parts of ISO/IEC 9075, the following conventions are used:

— An index entry in boldface indicates the page where the word, phrase, or BNF nonterminal is
defined.

— An index entry in italics indicates a page where the BNF nonterminal is used in a Format.

— An index entry in neither boldface nor italics indicates a page where the word, phrase, or
BNF nonterminal is not defined, but is used other than in a Format (for example, in a head-
ing, Function, Syntax Rule, Access Rule, General Rule, Conformance Rule, Table, or other
descriptive text).

6.3 Object identifier for Database Language SQL

Database language SQL has an Object identifier that identifies the characteristics of an SQL-
implementation. Each part of ISO/IEC 9075 specifies the content of the Object Identifier for that
part.

Function

The object identifier for Database Language SQL identifies the characteristics of an SQL-
implementation to other entities in an open systems environment.

NOTE 5 — The equivalent information is available to the SQL user in the Information Schema.

Format

<SQL object identifier> ::=
<SQL provenance> <SQL variant>

<SQL provenance> := <arcl> <arc2> <arc3>
<arcl> :=is o | 1] iso <left paren> 1 <right paren>
<arc2> := standar d | 0| standard <left paren> 0 <right paren>

<arc3> ;= 9075

<SQL variant> ::= <SQL edition> <SQL conformance>
<SQL edition> = <1987> | <1989> | <1992> | <199 x>
<1987> :: = 0 | edition1987 <left paren> 0 <right paren>

<1989> 1= <1989 base> <1989 package>

<1989 base> :: = 1 | edition1989 <left paren> 1 <right paren>

40 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.3 Object identifier for Database Language SQL

<1989 package> := <integrity no> | <integrity yes>

<integrity no> :: = 0 | IntegrityNo <left paren> 0 <right paren>
<integrity yes> :: = 1 | IntegrityYes <left paren> 1 <right paren>
<1992> 1 = 2 | edition1992 <left paren> 2 <right paren>

<SQL conformance> := <level> <parts>

<level> = <low> | <intermediate> | <high>

<low> :: = 0 | Low <left paren> 0 <right paren>

<intermediate> :: = 1 | Intermediate <left paren> 1 <right paren>
<high> :: = 2 | High <left paren> 2 <right paren>

<199x> = 3| edition199 x <left paren> 3 <right paren>

<parts> = <Part 3> <Part 4> <Part 5> <Part 6> <Part 7> <Part 8> <Part 9>
<Part n> := <Part n no> | <Part n yes>

<Part n no> := 0 | Part- nNo <left paren> 0 <right paren>
<Part n yes> =1l as specified in ISO/IEC 9075-n

NOTE 6 — For n > 3, <Part n yes> is specified in Part n.
Syntax Rules

1)

2)

3)

An <SQL conformance> of <high> shall not be specified unless the <SQL edition> is specified as
<1992>.

The value of <SQL conformance> identifies the level at which conformance is claimed as follows:

a) If <SQL edition> specifies <1992>, then

Case:
i) <low>, then Entry SQL level.
ii) <intermediate>, then Intermediate SQL level.
iii) <high>, then Full SQL level.
b) Otherwise:
i) <low>, then level 1 (one).
ii) <intermediate>, then level 2.

A specification of <1989 package> as <integrity no> implies that the integrity enhancement
feature is not implemented. A specification of <1989 package> as <integrity yes> implies that
the integrity enhancement feature is implemented.

Notation and conventions used in other parts of ISO/IEC 9075 41

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
6.3 Object identifier for Database Language SQL

4) <parts> shall not be specified unless <SQL edition> is <199x>.

5) Specification of <Part n No> implies that conformance to ISO/IEC 9075-n is not claimed.

42 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

7 Annexes to the parts of ISO/IEC 9075

Every annex to every part of ISO/IEC 9075 is informative. The content of each annex repeats what
is stated elsewhere in the normative text.

7.1 Implementation-defined elements

ISO/IEC 9075-2 and every incremental part contains an Annex that lists every element of SQL and
its processing that is specified in that part, and is permitted to differ between SQL-implementations,
but is required to be specified by the implementor for each particular SQL-implementation.

7.2 Implementation-dependent elements

ISO/IEC 9075-2 and every incremental part contains an Annex that lists every element of SQL
and its processing that is mentioned, but not specified in that part, and is thus permitted to differ
between SQL-implementations, but is not required to be specified by the implementor for any
particular SQL-implementation.

7.3 Deprecated features

ISO/IEC 9075-2 and every incremental part contains an Annex that lists every element of SQL and
its processing that is specified in that part, but that may not be specified in some future revision of
that part.

7.4 Incompatibilities with previous versions

ISO/IEC 9075-2 and every incremental part contains an Annex that lists every element of SQL and
its processing that is specified in a previous version of that part, but that is not specified in the
same way in the present version. The most frequent cause of such incompatibilities is the addition
of reserved key words to the language, which invalidates their use in SQL language that conformed
to an earlier version of ISO/IEC 9075.

Annexes to the parts of ISO/IEC 9075 43

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

44 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

8 Conformance

8.1 Requirements for SQL-implementations

An SQL-implementation shall support Core SQL and at least one of the following:
— The SQL-client module binding specified in ISO/IEC 9075-2.

— Embedded SQL as specified in ISO/IEC 9075-5 for at least one host language.

8.1.1 Parts and packages

An SQL-implementation may support the requirements of any incremental part of ISO/IEC 9075.

The SQL-implementation shall provide an Object Identifier (defined in Subclause 6.3, “Object iden-
tifier for Database Language SQL") that states the parts of ISO/IEC 9075 for which conformance is
claimed.

For each additional part of ISO/IEC 9075 for which conformance is claimed, the SQL-implementation
shall comply with all conformance requirements specified in that part.

An SQL-implementation may additional support the requirements of one or more packages of
features of ISO/IEC 9075, as specified in Annex C, “SQL Packages”. For each package for which
conformance is claimed, the SQL-implementation shall comply with all conformance requirements
specified for that package.

8.1.2 Functionality
For each part of ISO/IEC 9075 for which conformance is claimed, an SQL-implementation
— Shall process every SQL-statement according to the applicable rules.

— Shall provide and maintain an Information Schema for each catalog.

8.1.3 Additional features

An SQL-implementation may provide features additional to those specified by Core SQL, additional
parts of ISO/IEC 9075 to which conformance is claimed, and any packages to which conformance is
claimed, and may add to the list of reserved words.

NOTE 7 — If additional words are reserved, it is possible that a conforming SQL-statement may not be
processed correctly.

An SQL-implementation may provide user options to process nonconforming SQL statements.

An SQL-implementation may provide user options to process SQL statements so as to produce a
result different from that specified in the parts of ISO/IEC 9075. In such cases:

— It shall provide a flagger that identifies every SQL-statement that may produce such results.

Conformance 45

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
8.1 Requirements for SQL-implementations

— It shall produce such results only when explicitly required by the user option.
An SQL-implementation shall provide a flagger with the following properties:

— Syntax only: the flagger shall identify every SQL-statement that is non-conforming without
reference to schema contents

— Catalog Lookup: the flagger shall identify every SQL-statement that is non-conforming taking
account of schema contents.

8.1.4 Claims of conformance
A claim of conformance to one or more parts of ISO/IEC 9075 shall include:
— A list of those parts to which conformance is claimed.

— The definition for every element and action that ISO/IEC 9075 specifies to be implementation-
defined.

NOTE 8 — Each part of ISO/IEC 9075 specifies what shall be stated by claims of conformance to that part,

in addition to the requirements of this clause.

8.2 Requirements for SQL applications

8.2.1 Introduction

The term “SQL application” is used here to mean a collection of compilation units, each in some
standard programming language, that contains one or more of;:

= SQL statements.
< Invocations of SQL/CLI routines.

= Invocations of externally invoked procedures in SQL-client modules.

8.2.2 Requirements
A conforming SQL application shall be processed without syntax error, provided:

— Every SQL statement or SQL/CLI invocation is syntactically correct in accordance with ISO/IEC
9075.

— The schema contents satisfy the requirements of the SQL application.
— The SQL-data conforms to the schema contents.
— The user has not submitted for immediate execution a syntactically erroneous SQL statement.

A conforming SQL application shall not use any additional features, or features beyond the level of
conformance claimed.

46 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
8.2 Requirements for SQL applications
8.2.3 Claims of conformance
A claim of conformance by an SQL application shall state:
— What incremental parts of ISO/IEC 9075 are required to be supported.
— What implementation-defined features are relied on for correct performance.

— What schema contents are required to be supplied by the user.

Conformance 47

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

48 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Annex A
(informative)

Maintenance and interpretation of SQL

ISO/IEC JTC1 provides formal procedures for revision, maintenance, and interpretation of JTC1
Standards. Section 6.13 of the JTC1 Directives, “Maintenance/correction of defects in JTC1
Standards”, specifies procedures for creating and processing “defect reports”. Defect reports may
result in technical corrigenda, amendments, interpretations, or other commentary on an existing
International Standard. In addition, SC21, the JTC1 subcommittee that developed ISO/IEC 9075,
provides procedures for raising new “questions” about topics related to existing SC21 projects.
Questions may result in interpretations, new project proposals, or possibly new defect reports.

Since publication of ISO/IEC 9075:1992, the following SC21 questions have resulted in formal in-
terpretations of Database Language SQL. The first number in parentheses identifies the SC21 doc-
ument in which the question was first raised, and the second number identifies the SC21 document
in which the proposed interpretation was formally adopted.

1) [to be provided

Since publication of ISO/IEC 9075:1992, several new defects have been discovered in the SQL
language, leading to creation of the following defect reports.

1) | to be provided

The SQL language corrections proposed in each defect report were accepted by SC21/WG3 in date
(see SC21 N[to be provided |, city [to be provided | WG3 Resolutions). Further processing
within SC21 was superseded by adoption of ISO/IEC 9075:199x as a replacement standard for
ISO/IEC 9075:1992. All corrections to SQL proposed by these defect reports are included in ISO/IEC
9075.

Potential new questions or new defect reports addressing the specifications of ISO/IEC 9075 should
be communicated to:

Secretariat, ISO/IEC JTC1/SC21/WG3
Standards Council of Canada

Ottawa, Ontario

Canada.

Maintenance and interpretation of SQL 49

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

50 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Annex B
(informative)

SQL Feature Taxonomy

This Annex describes a taxonomy of features of the SQL language. This Annex will not appear in
the DIS version of SQL/Framework.

Editor’'s Note
This Annex currently contains two tables. The first contains a taxonomy of SQL/Foundation fea-
tures and should, as a result of the FCD ballot process, be moved to Part 2; the second contains a
taxonomy of SQL/Bindings features and should, as a result of the FCD ballot process, be moved to
Part 5.

The taxonomies of features for SQL/CLI (Part 3) and SQL/PSM (Part 4) appear in their respective
documents (though without much detail to date).

Table 2, “SQL/Foundation feature taxonomy”, contains a taxonomy of the features of the SQL
language that are specified in ISO/IEC 9075-2. In this table, the first column contains a counter
that may be used to quickly locate rows of the table; these values otherwise have no use and are
not stable — that is, they are subject to change in future editions of or even Technical Corrigenda to
ISO/IEC 9075 without notice.

The second column, “Feature ID”, specifies the formal identification of each feature and each subfea-
ture contained in the table. The Feature ID is stable and can be depended on to remain constant.
A Feature ID value comprises either a letter and three digits or a letter, three digits, a hyphen,
and one or two additional digits. Feature ID values containing a hyphen and additional digits in-
dicate “subfeatures” that help to define complete features, which are in turn indicated by Feature
ID values without a hyphen. Only entire features are used to specify the contents of Core SQL and
various packages.

The “Feature Description” column contains a brief description of the feature or subfeature associated
with the Feature ID value.

Editor’s Note
The Feature Description column must be enhanced during the FCD ballot period to identify specific
BNF non-terminal symbols and specific Syntax and/or General Rules.

The final column, named “Core SQL?", provides the definition of the minimal conformance possi-
bility for ISO/IEC 9075, called Core SQL. Features that are included in the definition of Core SQL
contain the value “YES” in this column; their subfeatures contain the value “(yes)” for consistency.
Features and subfeatures that are not part of Core SQL contain a dash (“—") in this column.

SQL Feature Taxonomy 51

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy

Feature Core
1D Feature Description SQL?

1 EO11 Numeric data types YES

2 EO11-1 The INTEGER and SMALLINT data types, integer literals, integer (yes)
expressions, integer comparison, and integer assignment.

3 EO011-2 The REAL, DOUBLE PRECISON, and FLOAT data types, approximate (yes)
numeric literals, approximate numeric expressions, approximate numeric
comparison, and approximate numeric assignment.

4 EO011-3 The DECIMAL and NUMERIC data types, decimal & numeric literals, (yes)
decimal & numeric expressions, decimal & numeric comparison, and
decimal & numeric assignment.

5 EO11-4 The +, -, *, and / arithmetic operators (yes)

6 EO011-5 The =, <>, >, >=, <, and <= operators (yes)

7 EO011-6 Implicit casting among the numeric data types (yes)

8 EO021 Character data types YES

9 E021-1 CHARACTER data type (including all its spellings) (yes)

10 E021-2 CHARACTER VARYING data type (including all its spellings and (yes)
implicit conversion to and from CHARACTER type)

11 E021-3 Character literals, character comparison, and character assignment (yes)

12 E021-4 The CHARACTER_LENGTH function (yes)

13 E021-5 The OCTET_LENGTH function (yes)

14 E021-6 The SUBSTRING function for use with CHARACTER and CHARACTER (yes)
VARYING data types.

15 E021-7 <character value expression>s by use of the concatenation operation on (yes)
CHARACTER and CHARACTER VARYING data types

16 E021-8 The UPPER and LOWER functions (yes)

17 E021-9 TRIM function (yes)

18 E021-10 Implicit casting among the character data types (yes)

19 EO031 Identifiers YES

20 E031-1 Delimited identifiers (yes)

21 E031-2 Lower case identifiers (yes)

22 E031-3 Trailing underscore (yes)

23 EO041 Basic schema definition YES

24 E041-1 <schema definition> as a means of defining base tables, and views (yes)
together with the ability to grant permissions on those base tables and
views.

Note: Although schema definition must be supported, it need not be
supported as an SQL statement.
25 E041-2 <table definition> for persistent base tables (yes)
52 ISO/IEC FCD 9075-1:199x% (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
26 E041-3 <view definition> (yes)
27 E041-4 WITH CHECK OPTION clause on <view definition> (yes)
Note: See item F751 for the LOCAL and CASCADED options on WITH
CHECK OPTION
28 E041-5 <grant statement> (yes)
29 E041-6 Allow the optional keyword TABLE on a <grant statement> (yes)
30 EO51 Basic query specification YES
31 EO051-1 SELECT DISTINCT (yes)
32 EO051-2 GROUP BY clause supported (yes)
33 EO051-3 A GROUP BY clause need not contain all the non-aggregated columns in (yes)
the select list.
34 EO051-4 A GROUP BY clause can contain columns that are not in the select list. (yes)
35 EO051-5 <select list> items can be renamed (optional “AS <column name>" in (yes)
<select sublist>)
36 E051-6 HAVING clause supported (yes)
37 EO051-7 Qualified * in select list (<select list> item of the form “<table name>.*" (yes)
or “<correlation name>.*")
38 E051-8 <correlation names> can be specified in the FROM clause and can (yes)
be used elsewhere in the <query specification> to distinguish among
columns. (See also E061-13)
39 E051-9 Support for the ability to rename the columns in the FROM clause (that (yes)
is "FROM <table name> [[AS] <correlation hame>] [<column name> {,
<column name>}... 17)
40 EO051-10 Derived tables supported in the FROM clause (yes)
41 EO051-11 Allow the optional keyword AS before a <correlation name> (yes)
42 E061 Basic predicates and search conditions YES
43 E061-1 <comparison predicate> (yes)
44 E061-2 <between predicate> (yes)
45 E061-3 <in predicate> (yes)
46 E061-4 <like predicate> (yes)
a7 E061-5 <like escape clause> (yes)
48 E061-6 <null predicate> (yes)
49 E061-7 <quantified comparison predicate> (yes)
50 E061-8 <exists predicate> (yes)
51 E061-9 Subqueries in <comparison predicate> (yes)
52 E061-10 Subqueries in <exists predicate> (yes)

SQL Feature Taxonomy 53

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
53 E061-11 Subqueries in <in predicate> (yes)
54 E061-12 Subqueries in <quantified predicate> (yes)
55 E061-13 Correlated subqueries (<correlation names> used in a sub-query as (yes)
correlated reference to a column in the outer query)
56 E061-14 <search condition> (Two or more predicates combined using the AND, (yes)
OR, and NOT logical operators)
57 EO71 Basic query expressions YES
58 EO071-1 UNION table operator (yes)
59 EO071-2 UNION ALL table operator (yes)
60 EO071-3 EXCEPT table operator (yes)
61 E071-4 EXCEPT ALL table operator (yes)
62 E071-5 Columns combined via table operators need not have exactly the same (yes)
data type.
63 EO071-6 Support of table operators within a subquery (yes)
64 EO081 Basic Privileges YES
65 E081-1 SELECT privilege (yes)
66 E081-2 DELETE privilege (yes)
67 E081-3 INSERT privilege at the table level (yes)
68 E081-4 UPDATE privilege at the table level (yes)
69 E081-5 UPDATE privilege at the column level (yes)
70 E081-6 REFERENCES privilege at the table level (yes)
71 E081-7 REFERENCES privilege at the column level (yes)
72 EO081-8 WITH GRANT OPTION (yes)
73 E091 Set functions YES
74 E091-1 AVG (yes)
75 E091-2 COUNT (yes)
76 E091-3 MAX (yes)
77 E091-4 MIN (ves)
78 E091-5 SUM (yes)
79 E091-6 ALL quantifier (yes)
80 E091-7 DISTINCT quantifier (yes)
81 E101 Basic data manipulation YES
82 E101-1 <insert statement> (yes)
83 E101-2 The VALUES clause in an <insert statement> used to insert multiple YES
rows with one invocation.
54 ISO/IEC FCD 9075-1:199x% (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core

1D Feature Description SQL?
84 E101-3 <update statement: searched> (yes)
85 E101-4 <delete statement: searched> (yes)
86 E111 <select statement: single row> YES
87 E121 Basic cursor support YES
88 E121-1 <declare cursor> (yes)
89 E121-2 Columns in the <order by clause> need not also be specified in the (yes)

<select list>

20 E121-3 Value expressions in ORDER BY clause (that is, a <sort key> element (yes)

is not restricted to being either a <column name> or an <integer> that
designates a column>)

91 E121-4 <open statement> (yes)
92 E121-5 <fetch statement> (yes)
93 E121-6 <update statement: positioned> (yes)
94 E121-7 <delete statement: positioned> (yes)
95 E121-8 <close statement> (yes)
96 E121-9 Read-only scrollable cursor support (yes)
97 E121-10 | FETCH NEXT (yes)
98 E121-11 | FETCH FIRST (yes)
99 E121-12 | FETCH LAST (yes)
100 E121-13 FETCH PRIOR (yes)
101 E121-14 FETCH ABSOLUTE (yes)
102 E121-15 FETCH RELATIVE (yes)
103 E121-16 Support the optional FROM clause in <fetch statement> (yes)
104 E131 Null value support (nulls in lieu of values) YES
105 E141 Basic integrity constraints YES
106 E141-1 NOT NULL constraints (yes)
107 E141-2 UNIQUE constraints (yes)
108 E141-3 PRIMARY KEY constraints (yes)

109 E141-4 Basic FOREIGN KEY constraint with the NO ACTION default for both (yes)
referential delete action and referential update action.

110 E141-5 Referential delete actions (yes)
111 E141-6 CHECK constraints (yes)
112 E141-7 Column defaults (yes)
113 E141-8 NOT NULL inferred on UNIQUE and PRIMARY KEY (yes)
114 E141-9 Named constraints (yes)

SQL Feature Taxonomy 55

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

56 ISO/IEC FCD 9075-1:199x (E)

Feature Core
1D Feature Description SQL?
115 E141-10 Referential name order (names in a foreign key can be specified in any (yes)
order)
116 E151 Transaction support YES
117 E151-1 <commit statement> (yes)
118 E151-2 <rollback statement> (yes)
119 E151-3 Support for the ISOLATION LEVEL clause on the SET TRANSACTION (yes)
statement. (Note: This does not mean that the semantics of the four
isolation levels must be supported. An implementation may simply
support the syntax and to escalate any specified level to a higher level.)
120 E151-4 Support for the READ ONLY and READ WRITE clauses on the SET (yes)
TRANSACTION statement
121 E151-5 Support for the READ ONLY and UPDATE clauses on the DECLARE (yes)
CURSOR statement.
122 E151-6 A <query expression> is updateable even though its <where clause> (yes)
contains a <subquery>.
123 E151-7 Allow the word WORK not to be specified. (yes)
124 E161 SQL comments YES
125 E161-1 Leading double <minus sign> comments (yes)
126 E161-2 Bracketed comments (/*...*/ comments) (yes)
127 E171 SQLSTATE support YES
128 E182 Module language YES
129 E19 Basic flagging YES
130 F021 Basic information schema (Support of the COLUMNS, TABLES, and YES
VIEWS views in the INFORMATION_SCHEMA)
131 F031 Basic schema manipulation YES
132 F031-1 CREATE TABLE statement to create persistent base tables (yes)
133 F031-2 CREATE VIEW statement (yes)
134 F031-3 GRANT statement (yes)
135 F031-4 ALTER TABLE statement, ADD COLUMN clause (yes)
136 F031-5 ALTER TABLE statement, DROP COLUMN clause (yes)
137 F031-6 ALTER TABLE statement, DROP COLUMN CASCADE clause (yes)
138 F031-7 ALTER TABLE statement, DROP COLUMN RESTRICT clause (yes)
139 F031-8 ALTER TABLE statement, ALTER COLUMN clause (yes)
140 F031-9 ALTER TABLE statement, ADD CONSTRAINT clause (yes)
141 F031-10 ALTER TABLE statement, DROP CONSTRAINT clause (yes)
142 F031-11 DROP TABLE statement (yes)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
143 F031-12 DROP TABLE statement, CASCADE clause (yes)
144 F031-13 DROP TABLE statement, RESTRICT clause (yes)
145 F031-14 DROP VIEW statement (yes)
146 F031-15 DROP VIEW statement, CASCADE clause (yes)
147 F031-16 DROP VIEW statement, RESTRICT clause (yes)
148 F031-17 REVOKE statement (yes)
149 F031-18 REVOKE statement, CASCADE clause (yes)
150 F031-19 REVOKE statement, RESTRICT clause (yes)
151 F041 Basic joined table YES
152 F041-1 Inner join (but not necessarily the INNER keyword) (yes)
153 F041-2 INNER keyword (yes)
154 F041-3 Left Outer Join (yes)
155 F041-4 Right Outer Join (yes)
156 F041-5 Outer joins can be nested (yes)
157 F041-6 Column names in ON clause can be in different order than those in the (yes)
OUTER JOIN clause
158 F041-7 The inner table in a left or right outer join can also be used in an inner (yes)
join
159 F041-8 All comparison operators are supported (rather than just =) (yes)
160 FO51 Basic date & time YES
161 F051-1 DATE data type (including support of DATE literal) (yes)
162 F051-2 TIME data type (including support of TIME literal) with fractional (yes)

seconds precision of at least 0.

163 F051-3 TIMESTAMP data type (including support of TIMESTAMP literal) with (yes)
fractional seconds precision of at least 0 and 6.

164 FO51-4 Comparison predicate on like date & time data types (yes)
165 F051-5 Explicit CAST between datetime types and CHARACTER & CHARACTER| (yes)
VARYING

166 F051-6 CURRENT_DATE (yes)
167 F051-7 CURRENT_TIME (yes)
168 F051-8 CURRENT_TIMESTAMP (yes)
169 F052 Interval data type —

170 F081 UNION in views YES
171 F121 Get diagnostics —

172 F131 Grouped operations YES

SQL Feature Taxonomy 57

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

58 ISO/IEC FCD 9075-1:199x (E)

Feature Core
1D Feature Description SQL?
173 F131-1 Even though a table in the FROM clause is a grouped view, the query (yes)
can contain a WHERE, GROUP BY, or HAVING
174 F131-2 Even though a table in the FROM clause is a grouped view, multiple (yes)
tables can be specified in the query
175 F131-3 Even though a table in the FROM clause is a grouped view, the select (yes)
list can contain a <set function>.
176 F131-4 A subquery within a comparison predicate cannot contain a GROUP BY (yes)
clause or a HAVING clause and can identify a grouped view.
177 F131-5 The table in the FROM clause of a single row SELECT statement can (yes)
be a grouped view. Also a single row SELECT statement may specify a
GROUP BY clause or HAVING clause.
178 F171 Multiple schemas per user YES
179 F181 Multiple module support (the ability to associate multiple host compila- YES
tion units with a single SQL-session at one time)
180 F201 CAST functions (excluding support for casting the INTERVAL data type) YES
181 F221 Explicit defaults YES
182 F222 DEFAULT VALUES support in an <insert statement> —
183 F231 Privilege Tables YES
184 F231-1 TABLE_PRIVILEGES view (yes)
185 F231-2 COLUMN_PRIVILEGES view (yes)
186 F231-3 USAGE_PRIVILEGES view (yes)
187 F251 Domain support —
188 F261 CASE expression YES
189 F261-1 <simple case> (yes)
190 F261-2 <searched case> (yes)
191 F261-3 NULLIF (yes)
192 F261-4 COALESCE (yes)
193 F271 Compound character literals —
194 F281 LIKE enhancements —
195 F291 UNIQUE predicate —
196 F301 <corresponding specification> in <query expression>s —
197 F302 INTERSECT table operator —
198 F311 Schema definition statement YES
199 F321 User authorization —
200 F331 Constraint tables YES
201 F331-1 TABLE_CONSTRAINTS view (yes)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
202 F331-2 REFERENTIAL_CONSTRAINTS view (yes)
203 F331-3 CHECK_CONSTRAINTS view (yes)
204 F341 Usage tables —
205 F361 User authorization —
206 F381 Extended schema manipulation —
207 F391 Long identifiers —
208 F401 Full outer join —
209 F401-1 Natural Join —
210 F411 Time zone specification —
211 F421 National character —
212 F441 Extended set function support —
213 F451 Character set definition —
214 F461 Named character sets —
215 F471 Scalar subquery values YES
216 F481 Expanded NULL predicate YES
217 F491 Constraint management —
218 F501 Features and conformance tables YES
219 F501-1 SQL_FEATURES (yes)
220 F501-2 SQL_SIZING (yes)
221 F511 BIT data type —
222 F521 Assertions —
223 F531 Temporary tables —
224 F551 Full datetime —
225 F561 Full value expressions —
226 F571 Truth value tests —
227 F581 The POSITION function for use with CHARACTER, CHARACTER —
VARYING, and LOB data types
228 F611 Indicator data types —
229 F641 Row and table constructors —
230 F651 Catalog name qualifiers —
231 F661 Simple tables —
232 F671 Subqueries in CHECK —
233 F681 Union and cross join —

SQL Feature Taxonomy 59

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
234 F691 Collation and translation —
235 F701 Referential update actions —
236 F721 Deferable constraints —
237 F731 INSERT column privileges —
238 F741 Referential MATCH types —
239 F751 View CHECK enhancements —
240 F761 Session management —
241 F771 Connection management —
242 F781 Self-referencing operations —
243 F791 Insensitive cursors —
244 F811 Extended flagging —
245 F821 Local table references —
246 F831 Full cursor update —
247 TO11 Timestamp in information schema for configuration management —
248 TO31 BOOLEAN data type —
249 T041 Basic LOB data type support YES
250 T041-1 BLOB data type (yes)
251 T041-2 CLOB data type (yes)
252 T041-3 LENGTH and SUBSTRING function support for LOB data types (yes)
253 T041-4 concatenation of LOB data types (yes)
254 T041-5 non-holdable locator for LOB data types (yes)
255 TO042 Extended LOB data type support —
256 T042-1 OVERLAY function —
257 T042-n other subfeatures to be specified —
258 TO71 CASCADE option for DROP COLLATION —
259 T121 WITH in <query expression> —
260 T131 Recursive query —
261 T141 SIMILAR predicate —
262 T151 DISTINCT predicate —
263 T161 Optional interval qualifier —
264 T171 LIKE clause in table definition —
265 T191 Referential action RESTRICT —
266 T201 Comparable data types for referential constraints YES

60 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?
267 T211 Triggers YES
268 T211-1 Support for triggers activated on UPDATE, INSERT, DELETE of one (yes)
base table.
269 T211-2 Support for BEFORE triggers that are applied before any modifications (yes)

are made to the database. These triggers have access to old (delete,
update) and new (insert, update) rows.

270 T211-3 Support for AFTER triggers that are applied before any modifications (yes)
are made to the database. These triggers have access to both old (delete,
update) and new (insert, update) rows and transition tables.

271 T211-4 Support for triggers that are to be applied once for each row of the (yes)
subject table that is affected by the triggering SQL operation.
272 T211-5 Ability to specify a search condition that must be true before the trigger (yes)
is invoked.
273 T211-6 Support for run-time rules for the interaction of triggers and constraints. (yes)
274 T211-7 TRIGGER privilege (yes)
275 T211-8 Multiple triggers for the same the event are executed in the order in (yes)
which they were created in the catalog.
276 T212 Triggers applied once for the triggering statement —
277 T221 WITH HOLD cursors YES
278 T231 SENSITIVE cursors —
279 T241 START TRANSACTION statement —
280 T251 LOCAL option for SET TRANSACTION statement —
281 T261 Chained transactions —
282 T271 Savepoints —
283 T281 SELECT privilege with column granularity —
284 T291 Static and Dynamic execution rights —
285 T301 Functional Dependencies —
286 T321 SQL-invoked routines YES
287 T321-1 User-defined functions (yes)
288 T321-2 User-defined stored procedures (yes)
289 T321-3 <routine invocation> (yes)
290 T321-4 <call statement> (yes)
2901 T321-5 <return statement> (yes)
292 T331 Roles —
293 T361 User-defined aggregate operators —
294 T371 Quantified predicate extensions —

SQL Feature Taxonomy 61

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
ID Feature Description SQL?

295 T391 Table name not required in <delete statement: positioned> or <update —

statement: poitioned>
296 T401 INSERT into a cursor —
297 T411 ROW may be specified in an UPDATE statement —
298 T421 Character Sets —

To do during the ballot: Give this a better name and, perhaps, merge it

along with F451 and F461.
299 T431 CUBE and ROLLUP operations —
300 T441 ABS and MOD functions —
301 T461 Symmetric <between predicate> —
302 T471 Result sets return value —
303 0011 Minimum user-defined data type support (distinct types) YES
304 0021 Basic user-defined data types (Support for structured types — ADTs and —

named row types — with the exception of those features listed under

Enhanced ADTS)
305 0022 Enhanced user-defined data types —
306 0022-1 Constructor option —
307 0022-2 Attribute default —
308 0022-3 Multiple inheritance —
309 0022-4 Public, private, protected specification on attributes (ANSI only) —
310 0022-5 Ordering clause in type definition —
311 0041 Reference types —
312 0051 Create table of type —
313 0061 ALTER TABLE <add named row type> —
314 0071 SQL paths in function and type name resolution —
315 0081 Subtables —
316 0091 Basic array support YES
317 0091-1 arrays of built-in data types (yes)
318 0091-2 arrays of distinct types (yes)
319 0092 Arrays of UDTs —
320 0094 Arrays of reference types —
321 0111 ONLY in query expressions (to restrict subtable search) —
322 0121 Dereference operation (path expressions) —
323 0131 Reference operation —
324 0141 Attribute & field reference —

62 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 2—SQL/Foundation feature taxonomy (Cont.)

Feature Core
1D Feature Description SQL?

325 0141-1 Observer reference —
326 0141-2 Field reference —

327 0151 Type predicate —
328 0161 <subtype treatment> —
329 0171 Array expressions YES
330 0191 Basic SQL routines on user-defined types (with dynamic dispatch) —
331 0192 Basic SQL routines on user-defined types —
332 0192-1 Identity functions —

333 0192-2 Generalized expressions —

334 0201 SQL routines on arrays YES
335 0201-1 Array parameters (yes)
336 0201-2 Array as result type of functions (yes)
337 0211 User-defined cast functions —
338 0231 ADT locators —
339 0232 Array locators YES

Table 3, “SQL/Bindings feature taxonomy”, contains a taxonomy of the features of the SQL language
that are specified in ISO/IEC 9075-5. In this table, the first column contains a counter that may
be used to quickly locate rows of the table; these values otherwise have no use and are not stable
— that is, they are subject to change in future editions of or even Technical Corrigenda to ISO/IEC
9075 without notice.

The second column, “Feature ID”, specifies the formal identification of each feature and each subfea-
ture contained in the table. The Feature ID is stable and can be depended on to remain constant.
A Feature ID value comprises either a letter and three digits or a letter, three digits, a hyphen,
and one or two additional digits. Feature ID values containing a hyphen and additional digits in-
dicate “subfeatures” that help to define complete features, which are in turn indicated by Feature
ID values without a hyphen. Only entire features are used to specify the contents of Core SQL and
various packages.

The “Feature Description” column contains a brief description of the feature or subfeature associated
with the Feature ID value.

Editor’s Note
The Feature Description column must be enhanced during the FCD ballot period to identify specific
BNF non-terminal symbols and specific Syntax and/or General Rules.

The final column, named “Core SQL?", provides the definition of the minimal conformance possi-
bility for ISO/IEC 9075, called Core SQL. Features that are included in the definition of Core SQL
contain the value “YES” in this column; their subfeatures contain the value “(yes)” for consistency.
Features and subfeatures that are not part of Core SQL contain a dash (“—") in this column.

SQL Feature Taxonomy 63

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Table 3—SQL/Bindings feature taxonomy

Feature Core
1D Feature Description SQL?
1 BOO1 Embedded SQL YES
2 B001-1 Embedded Ada (yes)
3 B001-2 Embedded C (yes)
4 B001-3 Embedded COBOL (yes)
5 B001-4 Embedded Fortran (yes)
6 B001-5 Embedded MUMPS (yes)
7 B001-6 Embedded Pascal (yes)
8 B001-7 Embedded PL/I (yes)
9 B002 Basic dynamic SQL (Support of the PREPARE, EXECUTE, EXECUTE —
IMMEDIATE, DESCRIBE, ALLOCATE DESCRIPTOR, and DEALLOCATH
DESCRIPTOR statements in some host language)
10 B003 Extended dynamic SQL —
11 B003-1 <describe input> statement —
12 B003-n other subfeatures to be specified —
13 B004 Extensions to embedded SQL exception declarations —

64 1SO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

Annex C
(informative)

SQL Packages

This Annex describes packages of features of the SQL language. In addition to conformance claims
to Core SQL, SQL-implementations may elect to claim conformance to one or more packages. While
this Annex specifies several such packages, it is expected that packages may be specified elsewhere,
outside of the scope of ISO/IEC 9075.

C.1 Enhanced datetime facilities

The package called “enhanced datetime facilities” comprises the following features of the SQL
language as specified in the SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

— FO052 (Interval data type)
— F411 (Time zone specification)
— F551 (Full datetime)

— T161 (Optional interval qualifier)

C.2 Enhanced integrity management

The package called “enhanced integrity management” comprises the following features of the SQL
language as specified in the SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.
— F521 (Assertions)

— F701 (Referential update actions)

— F491 (Constraint management)

— F671 (Subqueries in CHECK constraints)

— T212 (FOR EACH STATEMENT triggers)

— T191 (Referential action RESTRICT)

SQL Packages 65

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
C.3 OLAP facilities

C.3 OLAP facilities

The package called “OLAP facilities” comprises the following features of the SQL language as
specified in the SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

— T431 (CUBE and ROLLUP)
— F302 (INTERSECT table operator)
— F641 (Row and table constructors)
— F401 (FULL OUTER JOIN)

— F471 (Scalar subquery values)

C.4 PSM

The package called “PSM” comprises the following features of the SQL language as specified in the
SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

— PO1 (Stored modules (<SQL-server module definition>))
— P02 (Computational completeness)

— P03 (Information Schema views)

C.5 CLI

The package called “cli” comprises the following features of the SQL language as specified in the
SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

— CO1 (SQL/CLI)

C.6 Basic object support

The package called “basic object support” comprises the following features of the SQL language as
specified in the SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

— 0021 (Basic user-defined types, including single inheritance)

— 0041 (Reference types)

— 0051 (CREATE TABLE of type)

— 0092 (Arrays of UDTSs)

— 0094 (Arrays of reference types)

— 0121 (Dereference operation)

— 0131 (Reference operation)

66 ISO/IEC FCD 9075-1:199x (E)

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001
C.6 Basic object support

0141 (Attribute & field reference)

0191 (Basic SQL routines on user-defined types, including dynamic dispatch)

C.7 Enhanced object support

The package called “enhanced object support” comprises the following features of the SQL language
as specified in the SQL Feature Taxonomy Annex of the various parts of ISO/IEC 9075.

0022 (Enhanced user-defined types, including constructor option, attribute defaults, multiple
inheritance, and ordering clause)

0061 (ALTER TABLE, ADD named row type)

0071 (SQL-paths in function and type name resolution)

0081 (Subtables)

0111 (ONLY in query expressions (to restrict subtable search))
0151 (Type predicate)

0161 (<subtype treatment>)

0192 (SQL routines on user-defined types, including identity functions and generalized expres-
sions)

0211 (User-defined cast functions)

0231 (ADT locators)

SQL Packages 67

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was
defined; index entries appearing in italics indicate a page where the BNF nonterminal was used in a Format;
and index entries appearing in roman type indicate a page where the word, phrase, or BNF nonterminal
was used in a heading, Function, Syntax Rule, Access Rule, General Rule, Leveling Rule, Table, or other

descriptive text.

<1987> ¢ 40
<1989> ¢ 40
<1992> « 40, 41

—A—
ABS ¢ 62
ABSOLUTE « 55
abstract data type « 14, 16, 26
access mode ¢ 21
activated « 61
active « 23, 26, 29
Ada - 64
ADD ¢ 56, 67
ADMIN « 18
ADT 13, 14, 16, 22, 62, 63, 67
AFTER « 17, 61
AFTER trigger « 61
ALL 54
ALTER « 56, 62, 67
ALTER TABLE 56
AND « 54
applicable « 45
application program ¢ 19, 26, 28
approximate numeric ¢ 11, 52
<arcl>-s 40
<arc2>-+ 40
<arc3> - 40
array 12, 13, 62, 63
array locator ¢ 13
array type 12, 13
AS 53
assertion « 14, 18, 37
assignment » 14, 27, 33, 52
atomic ¢ 5, 10, 11, 17, 21

attribute « 5, 6, 14, 16, 28, 37, 62, 67

Attribute « 16, 62, 67
ATTRIBUTES « 22, 51, 63
attribute type « 16
attribute values « 16

authorization identifier« 7, 8, 9, 18

AVG « 54

—B—
<1989 base> -+ 40

based * 3, 6, 11, 15, 16, 18, 25, 33, 37

base table * 7, 9, 10, 12, 13, 14, 16, 17, 52, 56, 61

base tables+ 7, 9, 10, 12, 14, 16, 52, 56

BEFORE ¢ 17, 61

BEFORE trigger « 61

be included in « 37

<between predicate> « 53, 62
binary large object ¢ 11
binary string type « 11
binding style < 8, 19

binding styles * 19

bit string type ¢ 11

BLOB - 11, 13, 60

BNF nonterminal symbol « 31, 38, 39

Boolean+ 11, 25
BOOLEAN ¢ 60
built-in function « 22
BY ¢ 53, 55, 58

—C—
<call statement>« 61
candidate key ¢ 26
candidate routine * 27
CASCADED « 53
CAST 57, 58
catalog+ 7, 9, 28, 45, 61

character ¢ 5, 6, 11, 13, 14, 15, 16, 17, 19, 20, 22,

23, 28, 31, 32, 40, 52, 58, 59

CHARACTER « 52, 57, 59
character large object» 11, 13
character repertoire « 11, 15
character set 15, 28, 59
character type » 11

<character value expression> ¢ 52

CHARACTER_LENGTH ¢ 52
CHECK ¢ 53, 55, 59, 60, 65
check constrainte 17, 18
CHECK_CONSTRAINTS ¢ 59
CLOB - 11, 13, 60

<close statement> ¢ 55

Index 1

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

cluster« 9

COALESCE » 58

COBOL « 64

collating sequence ¢ 15

collation ¢ 15

collection <6, 9, 10, 12, 18, 36, 37, 46

column 6, 10, 14, 15, 17, 18, 19, 29, 36, 37, 40, 51,
53, 54, 55, 60, 61, 63

<column name> ¢ 53, 55

COLUMNS « 56

COLUMN_PRIVILEGES » 58

COMMIT « 21

<commit statement> 56

COMMITTED » 21

<comparison predicate> ¢ 53

compilation unite 5, 7, 22, 28, 46, 58

componente5, 6, 7, 14, 15, 16, 17, 22

conditions « 21, 27, 28, 34, 35, 53

conformance ¢ 6, 32, 40, 41, 42, 45, 46, 47, 51, 59,
63, 65

Conformance « 32, 33, 34, 40, 45

conforming SQL-implementation ¢ 5, 6, 19, 21

Connect « 60

constraint mode ¢ 18, 19

CONSTRAINTS « 58, 59

containe 3, 7, 8, 9, 10, 14, 19, 21, 22, 25, 27, 28, 29,
33, 34, 35, 36, 43, 46, 51, 53, 56, 58, 63

contained in ¢ 34, 36, 51, 63

containing * 7, 21, 22, 34, 35, 36, 51, 63

contains* 7, 8, 9, 10, 19, 21, 25, 28, 34, 35, 43, 46,
51, 56, 63

<correlation name> ¢ 53

COUNT « 54

covered ¢ 5, 49

CREATE « 56, 66

created base table « 10

CUBE « 62, 66

CURRENT_DATE ¢ 57

CURRENT_TIMESTAMP ¢ 57

—D—

Data- 1, 3, 20, 25, 40, 49

database ¢ 7, 28, 29, 61

data type ¢ 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 19,
20, 22, 25, 26, 29, 52, 54, 57, 58, 59, 60, 62,
65

date ¢ 10, 12, 19, 21, 23, 26, 27, 29, 43, 49, 51, 55,
56, 57, 59, 60, 61, 62, 65

DATE « 57

datetime types * 12, 57

DAY 12

day-time intervals « 12

DEALLOCATE -« 64

DECIMAL « 52

DECLARE * 56

<declare cursor>« 55

declared temporary table « 10

DEFAULT « 58

default collation ¢ 15

deferrable « 18, 19

2 ISO/IEC FCD 9075-1:199x (E)

deferred « 19

definition schema 9

Definition Schema « 9

DEFINITION_SCHEMA « 9

degree ¢ 13, 21

DELETE « 17, 18, 54, 61

<delete statement: positioned> ¢ 55, 62

<delete statement: searched> ¢ 55

depend 5, 6, 10, 13, 14, 17, 19, 26, 27, 33, 34, 35,
37, 38, 43, 51, 63

dependent« 5, 6, 13, 14, 19, 27, 33, 34, 35, 37, 43

depends on ¢ 17, 37, 38

derived table 10

DESCRIBE « 64

Description « 33, 39, 51, 52, 63, 64

descriptor ¢ 5, 6, 9, 10, 14, 16, 20, 26, 27, 28, 29, 33,
37

DESCRIPTOR « 64

descriptor area « 20, 28, 29, 33

deterministic « 19, 35

diagnostics area * 8, 21, 24, 26

directly « 16, 20, 23, 28, 29

direct result of executing an SQL-statement « 36

distinct « 6, 10, 12, 14, 15, 16, 17, 26, 62

DISTINCT « 53, 54, 60

distinct type « 14, 16, 26, 62

domain e 14, 15, 18, 37

domain constraint » 14, 15, 18

DOUBLE « 52

DROP « 56, 57, 60

duplicate « 19

—E—
EACH « 65
Editor's Note « 51, 63
effective « 35, 37, 40
effectively « 35, 37, 40
element« 6, 12, 31, 32, 33, 35, 36, 43, 46, 55
element type « 12
embedded ¢ 13, 23, 28, 29, 64
encapsulated ¢ 16
encapsulation « 16
environment e 6, 7, 9, 21, 22, 25, 27, 37, 40
equivalent 26, 28, 36, 37, 40
exact numeric « 11
exception « 20, 24, 27, 29, 33, 34, 35, 62, 64
Execute « 8
EXECUTE » 18, 64
<exists predicate> ¢ 53
explicit » 8, 14, 31, 33, 36, 37, 38, 46
Explicit « 57, 58
<externally-invoked procedure> « 36
externally-invoked routine ¢ 22
external routine ¢ 22
EXTRACT « 10

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

— F—
FETCH « 55
<fetch statement> ¢ 55
FIRST « 55
FLOAT ¢ 52
FOREIGN « 55
form-of-use ¢ 15
FROM « 53, 55, 58
function « 13, 15, 16, 22, 23, 25, 26, 29, 31, 35, 45,
52, 54, 58, 59, 60, 61, 62, 63, 67
functional dependencies ¢ 26

— G —
generally contain * 34
global temporary table « 10
GRANT ¢ 54, 56
<grant statement> ¢ 53
GROUP « 53, 58
grouped view ¢ 58

handle « 27

HAVING « 53, 58

<high>« 41

HOLD « 61

host language « 19, 20, 28, 29, 45, 64
HOUR « 12

— | —

identity function « 22, 67

immediate « 19, 20, 29, 31, 34, 36, 38, 39, 46

IMMEDIATE « 64

immediately contain 34, 36

implementation 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15,
19, 20, 21, 22, 23, 25, 26, 27, 28, 33, 34, 35,
37, 40, 43, 45, 46, 47, 56, 65

implementation-defined 5, 7, 8, 9, 11, 19, 22, 23,
28, 35, 46, 47

implementation-dependent ¢ 5, 14, 19, 33, 34, 35

implicit » 21, 36, 52

Implicit « 52

include 5, 7, 9, 11, 12, 16, 27, 28, 35, 37, 39, 46,
49, 51, 63

incremental parts « 38, 47

independent ¢ 5, 13, 27, 37

Index typography ¢ 40

indicator « 20

Indicator ¢ 20, 59

indicator parameter « 20

indirect result of executing an SQL-statement « 36

inessential « 35

Information Schema « 9, 15, 18, 27, 33, 40, 45, 66

INFORMATION_SCHEMA « 9, 56

inherit » 14, 16, 62, 66, 67

inherits « 16

INNER ¢ 57

innermost « 31, 34

inner table « 57

<in predicate> ¢ 53, 54

INSERT « 17, 18, 54, 60, 61, 62

<insert statement> « 54, 58

instance * 5, 6, 7, 13, 14, 16, 31, 32, 33, 34, 36, 37,
39

INTEGER ¢ 52

integrity constraint » 17, 55

<integrity no> e« 41

<integrity yes> e« 41

interface « 3, 19, 25, 29

<intermediate> « 41

INTERSECT ¢ 58, 66

INTERVAL « 58

interval type « 12, 26

intervening ¢ 34, 38

is a part of « 36, 37

is dependent on « 37

ISOLATION « 56

isolation level » 21, 56

—J—
JOIN « 57

— K=
KEY ¢ 17, 55
known not nullable « 14

— L —
LAST « 55
<left paren>+ 40, 41
LENGTH ¢ 52, 60
<level>+ 41
level of conformance ¢ 46
LIKE ¢ 58, 60
<like predicate> 53
LOB « 59, 60
LOCAL « 53, 61
local temporary table « 10
locator « 13, 16, 26, 60, 63, 67
Locator ¢ 13
locator type « 13, 26
LOW 52
<low> e« 41
LOWER ¢ 52

MATCH « 60

match type « 17

MAX « 54

MIN « 54

<minus sign>« 56

MINUTE » 12

MOD « 62

<modified item> ¢ 38

module « 3, 7, 8, 10, 14, 18, 19, 20, 21, 22, 23, 27,
45, 46, 58, 66

MONTH « 12

MUMPS « 64

mutation « 14

mutator function ¢ 16, 22

Index 3

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

— N —
Name ¢ 16, 55, 59
named row type ¢ 12, 16, 62, 67
NATIONAL « 11
national character repertoire « 11
NEXT « 55
NO « 55
non-deterministic ¢ 19
NOT « 54, 55
not deferrable « 18
null <5, 11, 14, 16, 17, 20, 53, 55
NULL « 11, 55, 59
nullability characteristic « 14, 16, 17
NULLIF « 58
<null predicate> « 53
null value « 5, 11, 14, 17, 20
NUMERIC ¢ 52

— 00—
object«5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 21, 22, 23,
26, 32, 33, 37, 40, 41, 45, 66, 67
object identifier « 40
observer function « 16
octete 11
OCTET_LENGTH ¢ 52
ON 57
ONLY 56, 62, 67
<open statement> ¢ 55
operator ¢ 29, 31, 35, 52, 54, 57, 58, 61, 66
Option ¢ 60, 65
OPTION ¢ 18, 53, 54
OR <54
<order by clause> ¢ 55
OUTER 57, 66
outermost ¢ 34
output parameter « 20
OVERLAY « 60
overloaded « 22
owned by 9

—P—
<1989 package> -« 40, 41
parameter ¢ 10, 13, 16, 20, 21, 22, 23, 27, 33, 36, 63
Part 23, 51
Part 33, 51
Part 4«3, 51
Part 5«3, 51
Part 63
Part 73
<Part n>+41
<Part nno>-+41
<Part nyes>-« 41
part of ¢ 6, 8, 10, 15, 25, 34, 35, 36, 37, 38, 40, 43,
45, 46, 51, 63
<parts>-e 41, 42
Pascal « 64
period * 12, 29, 51, 63
period type ¢ 29
permitted « 8, 11, 12, 19, 43

4 I1SO/IEC FCD 9075-1:199x (E)

persiste 1, 5, 9, 10, 13, 14, 18, 21, 23, 52, 56

persistente 1, 5, 9, 10, 13, 14, 18, 21, 23, 52, 56

persistent base table ¢ 10, 52

POSITION « 59

possibly modify SQL-data ¢ 35

possibly non-deterministic ¢ 19

possibly nullable « 14

precede ¢ 33, 35

precision ¢ 10, 11, 12, 14, 57

predefined ¢ 10, 12, 22

predefined function « 22

PREPARE » 64

PRIMARY « 17, 55

primary key ¢ 17

primary key constraint ¢ 17

PRIOR ¢ 55

privilege ¢ 9, 18, 54, 60, 61

PRIVILEGES ° 58

procedure * 7, 8, 17, 19, 20, 21, 22, 23, 28, 36, 46,
49, 61

production rule 31, 32, 34

property ¢ 5, 12, 18

PUBLIC « 18

—Q—
<quantified comparison predicate> 53
<quantified predicate> * 54
query « 10, 17, 34, 37, 53, 54, 56, 58, 59, 60, 62, 66,
67
<query expression> « 34, 37, 56, 58, 60
<query specification> * 53

— R —
READ » 21, 56
read-only « 21
READ ONLY ¢ 56
read-write » 21
READ WRITE « 56
REAL « 52
REF « 12
referenced columns « 17
referenced table « 17
REFERENCES « 18, 54
reference type * 12, 62, 66
referencing columns « 17
referencing table « 17
referential constraint» 17, 60
REFERENTIAL_CONSTRAINTS « 59
RELATIVE « 55
REPEATABLE « 21
repertoire ¢ 11, 15
representation ¢ 5, 6, 9
requires <5, 17, 37
reserved ¢ 10, 43, 45
RESTRICT - 56, 57, 60, 65
RESULT » 22
result parameter ¢ 22
returned value « 13
<return statement> e« 61
REVOKE « 57

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

<right paren> « 40, 41

role 18

role authorization « 18

<rollback statement> ¢ 56

ROLLUP « 62, 66

<routine invocation>+ 34, 36, 61

rowe5, 6, 9, 10, 12, 14, 16, 17, 23, 36, 37, 40, 51,
54, 55, 58, 61, 62, 63, 67

row type « 5, 12, 14, 16, 62, 67

—S—

schema-5, 7, 8, 9, 10, 12, 14, 15, 18, 21, 22, 23,
26, 27, 28, 32, 33, 34, 35, 46, 47, 52, 56, 58,
59, 60

SCHEMA « 9, 56

<schema definition> ¢ 52

schema routine « 18

scope-1, 5, 6, 32, 36, 38, 65

search condition * 17, 18, 35, 37, 53, 54, 61

<search condition>« 37, 54

<searched case> * 58

SECOND ¢ 12

SELECT « 18, 53, 54, 58, 61

<select list> ¢ 53, 55

<select statement: single row> ¢ 55

<select sublist> « 53

sequence 5, 6, 11, 12, 15, 21, 23, 32, 35

serializable « 21

SERIALIZABLE « 21

SET « 56, 61

set function « 58, 59

set of subject routines « 34

shall » 6, 17, 32, 33, 34, 36, 38, 41, 42, 45, 46, 47

signature « 22

significant » 25

SIMILAR ¢ 60

<simple case>+58

simply contain « 34

simply contained in * 34

simply containing * 34

simply contains « 34

site* 5, 6, 7, 10, 12, 13, 14, 15, 16, 25, 36

SMALLINT ¢ 52

<sort key> « 55

source ¢ 14, 26

specific name « 14

specified by ¢ 5, 8, 10, 12, 13, 16, 19, 22, 34, 35, 37,
43

specifies » 10, 12, 17, 19, 20, 21, 25, 26, 28, 29, 31,
32, 40, 41, 46, 49, 51, 63, 65

specify * 1, 8, 10, 11, 21, 25, 26, 27, 32, 33, 34, 35,
36, 37, 38, 51, 58, 61, 63

SQL-agent- 7, 8, 13, 19, 20, 21, 25, 27, 28

SQL-client« 7, 8, 10, 19, 20, 21, 23, 26, 27, 45, 46

SQL-client module « 7, 8, 10, 19, 20, 21, 23, 45, 46

<SQL conformance> ¢ 40, 41

SQL-connection « 8, 23, 26, 27

SQL-data 6, 7, 8, 9, 10, 13, 14, 16, 21, 23, 26, 33,
35, 46

<SQL edition>« 40, 41, 42

SQL-environment« 6, 7, 9, 21, 22, 25, 27, 37

SQL-implementation 1, 5, 6, 7, 8, 9, 10, 13, 15, 19,
20, 21, 22, 25, 26, 27, 28, 40, 43, 45, 46, 65

SQL-invoked function ¢ 22, 35

SQL-invoked procedure ¢ 22

SQL-invoked routine « 14, 18, 21, 22, 34, 36, 61

<SQL-invoked routine> ¢ 34, 36

<SQL object identifier> « 40

SQL-path « 67

<SQL procedure statement> ¢ 36

<SQL provenance> « 40

SQL routine ¢ 22, 24, 27, 63, 67

SQL-schema-«5, 7, 9, 14, 21, 23, 26

SQL-server«7, 8, 9, 14, 18, 21, 22, 23, 26, 27, 66

SQL-server module « 14, 18, 21, 22, 27, 66

<SQL-server module definition> ¢ 66

SQL-session 5, 8, 9, 10, 13, 18, 22, 23, 26, 27, 28,
58

SQL-session module ¢« 22

SQLSTATE - 20, 56

SQL-statement 6, 7, 8, 13, 19, 20, 21, 22, 23, 25,
26, 27, 28, 29, 33, 36, 45, 46

SQL-transaction * 5, 10, 13, 18, 21, 23, 26

<SQL variant> ¢ 40

START <61

state+ 1, 6, 7, 8, 9, 10, 13, 17, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 32, 33, 36, 37, 39, 43, 45,
46, 47, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64

STATE « 20, 56, 65

status parameter ¢ 20, 21, 33

subject routine « 34

subject table « 61

<subquery> ¢ 56

substitutability « 16

SUBSTRING ¢ 10, 52, 60

subtable « 16, 62, 67

subtype ¢ 6, 16, 63, 67

<subtype treatment> ¢ 63, 67

successful completion « 21

SUM 54

supertable * 16

supertables ¢ 16

supertype ¢ 16

supertypes ¢ 16

supplied « 47

syntax error or access rule violation ¢ 34, 35

—T—

tablee5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 22,
23, 26, 27, 29, 33, 34, 36, 37, 38, 39, 40, 51,
52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66,
67

TABLE ¢ 53, 56, 57

table constraint« 15, 17, 18, 37

<table definition> « 52

table descriptor « 37

<table name>+ 34, 53

TABLES ¢ 56

TABLE_CONSTRAINTS « 58

TABLE_PRIVILEGES « 58

Index 5

ISO/IEC JTC1/SC21 N11137 = DBL:CWB-001

targete 10, 13, 14, 33
temporary table « 10
TIME » 12, 57
TIMESTAMP ¢ 12, 57

transaction ¢ 5, 10, 13, 18, 19, 21, 23, 25, 26, 29, 61

TRANSACTION « 56, 61
transaction-initiating « 21
transaction manager ¢ 25
transaction state ¢ 21, 23, 26
translation ¢ 15, 60

trigger » 17, 36, 61, 65
TRIGGER ¢ 18, 61

trigger action time ¢ 17
<trigger definition> ¢ 36
triggered actions ¢ 17
<triggered SQL statement> * 36
trigger event e« 17

TRIM ¢ 52

Type * 63, 67

—U—
UDT 37, 62, 66
UNCOMMITTED « 21
UNION « 54, 57
unique columns ¢ 17
unique constraint » 17
updatable ¢ 10
UPDATE » 17, 18, 54, 56, 61, 62
<update statement: positioned> * 55
<update statement: searched> ¢ 55
USAGE -« 18, 58
USAGE_PRIVILEGES « 58

user-defined ¢ 10, 14, 15, 16, 62, 63, 66, 67

user-defined type « 14, 63, 66, 67

—V =
valid« 3, 12, 37, 43

6 ISO/IEC FCD 9075-1:199x (E)

Value ¢ 55

VALUES ¢ 54, 58

variable ¢ 10, 11, 13, 27

variant « 40

VARYING ¢ 52, 57, 59

view ¢ 9, 10, 14, 17, 25, 33, 34, 52, 53, 56, 57, 58,
59, 66

VIEW 56, 57

view definition « 17, 33, 34, 53

<view definition> ¢ 34, 53

viewed table ¢ 10, 33

VIEWS ¢ 56

— W —
WHERE -« 58
WITH « 12, 18, 53, 54, 60, 61
with an intervening « 34
WITH CHECK OPTION « 53
with grant option < 18
WITH GRANT OPTION « 54
without an intervening « 34

WORK « 56
WRITE « 56

— X —
<199x>+ 40, 41, 42

—VY—

YEAR ¢ 12

year-month intervals « 12

YES 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64

7
ZONE » 12

Page 1

Note 1, Jim Melton, 16-10-97 14:54:15
SC32 N00001

